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Abstract
Designing efficient selection techniques for graphical user inter-
faces (GUIs) is fundamental in HCI research. We derive selection
techniques based on the multiple process model, a theory that de-
tails the motor control processes during goal-directed movements.
Specifically, we deduce three theoretical assumptions on how con-
trol processes of pre-planning, impulse control, and limb-target
control could influence selection movements when adjusting GUI
elements, including visual feedback, cursor position, and target
position. Corresponding to our assumptions, we develop three tech-
niques that hide the cursor when a target is highlighted, snap the
cursor when selection begins, and expand clustered objects during
selection movements. After that, we pre-register the assumptions
and research methodology and evaluate the techniques in three
crowdsourcing-based pointing studies. Our results show that all
techniques improved the selection efficiency compared to estab-
lished baselines. We further discuss the design implications and
reflect on how we derived techniques from theory.

CCS Concepts
• Human-centered computing→ HCI theory, concepts and
models; Pointing; Empirical studies in HCI .
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1 Introduction
Target selection is a fundamental task in graphical user interfaces
(GUIs) such as those in desktops, mobile devices, and mixed reality
systems. The targets include menus, icons, buttons, and 3D objects,
which can vary in their sizes and inter-distances, and can be ar-
ranged in grid, circular, randomized, and other layouts [2, 5]. It is
thus crucial to develop efficient techniques for various selection
tasks. To develop such techniques, the field of human-computer
interaction (HCI) has accumulated many principles and guidelines.
For instance, one key principle to improve selection performance
is to reduce the effective distance from the cursor to the target
(𝐷𝑒 ) and enlarge the target’s effective size (𝑊𝑒 ) [5]. This has been
achieved by dynamically adjusting the cursor [34], target [50], and
control-display gain [12].

The field of motor control focuses on understanding how goal-
directed reaching movements, such as target selection in GUIs, are
planned and executed [25, 26, 52]. It has built models to describe
these movements, which have provided important theoretical back-
ground for design rationales in HCI. For example, the optimized
submovement model [51] proposed in 1988 has been used to justify
the designs that decrease 𝐷𝑒 to expedite the fast ballistic move-
ment and increase𝑊𝑒 to facilitate the feedback-based correction
movement [5, 17].

The multiple process model [23, 26] is a theory about the under-
lying control processes—specifically pre-planning, impulse control,
and limb-target control—that give rise to the ballistic and correction
components described in previous models. The model quantifies
when and to what extent these processes occur, which has been
supported by extensive empirical evidence. By providing detailed ex-
planations of the underlying mechanics, the model enables insights
into how dynamic changes in GUI elements can affect selection
movements and, consequently, user performance.

In this research, we derive new selection techniques for GUIs
based on the multiple process model. We first propose three the-
oretical assumptions about how control processes may influence
selectionmovements and user performance due to the manipulation
of GUI elements, including hiding the cursor when a target is high-
lighted, snapping the cursor when selection begins, and expanding
clustered objects during selection movements. Corresponding to
each assumption, we develop three techniques (Cloaking, Pulsing,
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and Unfurling) that take advantage of these control processes. After
that, we pre-register the assumptions and research methodology
and conduct three crowdsourcing-based pointing studies to evalu-
ate the techniques. The results show that all techniques improved
the selection efficiency compared to established baselines. Based on
the study results, we discuss design implications. Finally, we reflect
on how to derive techniques from theory through what we term
justified concepts.

2 Related Work
We first introduce key concepts in HCI that are relevant to our
work in designing target selection techniques for GUIs. We then
highlight several goal-directed reaching models that have provided
theoretical background for the selection techniques. We finally
discuss the multiple process model that serves as a base theory to
derive our techniques.

2.1 Target Selection in GUIs
In GUIs, target selection usually involves users controlling an end
effector, such as a cursor, virtual hand, or pointer, to both indicate
(e.g., by pointing) and confirm (e.g., by pressing a button) their
selection of a target. The field of HCI has proposed many guidelines
and techniques to enhance selection performance and experience [2,
5].

One key design guideline is to convey what the system knows
about the user input through semantic feedback. For example, GUIs
often display where the user is pointing (e.g., by presenting a visual
cursor) and which object the user is targeting (e.g., by visually
highlighting the boundary of an object). Such feedback is typically
an integral part of GUIs in modern personal computers, helping to
reduce user errors and improve efficiency [1].

Another rationale for improving user performance is to reduce
movement distance 𝐷𝑒 and increase target size𝑊𝑒 . Many selection
facilitation techniques follow this rationale by altering the positions
and sizes of the cursor and candidate objects [5, 34]. For example,
to reduce 𝐷𝑒 , snapping techniques [7, 36] eliminate the empty
space between the cursor and the target by making the cursor jump
towards the target. To increase𝑊𝑒 , target expansion techniques [37,
50] enlarge the size of the target. To reduce 𝐷𝑒 and increase𝑊𝑒

simultaneously, techniques such as pointer acceleration [17] and
semantic pointing [12] dynamically adjust the cursor velocity or
the control-display gain based on the relative positions between
the cursor and objects.

To enable more precise selection of clustered or occluded targets,
a selection technique may introduce additional steps to minimize
user errors. For example, visual menu techniques [4] and other
progressive refinement techniques [3, 29, 84] reorganize densely clus-
tered targets into more accessible layouts, such as decision trees,
grids, or circular arrangements, to facilitate easier selection and
disambiguation. Other techniques may incorporate multiple modal-
ities (e.g., eye gaze for faster pointing and hand for more precise
refinements [46]) or movement trajectory information (e.g., smooth
pursuit [77] or trajectory-based target prediction methods [18, 41]).

The field of object selection in GUIs continues to evolve and
expand with new techniques, especially with the challenges aris-
ing from advancements in technologies such as mobile devices,

smartwatches, and mixed reality systems, which provide unique
challenges, including limited screen sizes and the complexities of
3D interactions [82]. Many techniques could find their theoretical
root in goal-directed reaching models.

2.2 Goal-Directed Reaching Models
Target selection in GUIs can be viewed as a goal-directed reach-
ing task, which has been studied and modeled within the field of
motor control. In 1899, Woodworth identified two main compo-
nents in such movements: an initial adjustment determined by the
first movement impulse followed by finer adjustments when ap-
proaching closer to the target [79]. Over more than a century of
development, researchers have proposed many models [25, 52, 64]
to describe thesemovements and explain Fitts’s law [31], such as the
iterative correction model [21, 45], the impulse variability model [70],
and the single correction model [9, 10].

The optimized submovement model [51, 52, 64] proposed by
Meyer et al. in 1988 is perhaps the most familiar one to the HCI
audience [55]. According to the model, a rapid movement impulse,
often dubbed as the ballistic movement, is first initiated to hit the
target. However, the movement’s spatial accuracy is imperfect, and
its endpoint may fall outside the target. This occurs because noise
increases with the magnitude of force, which rises in more ballistic
movements—a phenomenon known as the speed-accuracy trade-
off [70]. In conditions where the endpoint falls outside of the target,
one or more feedback-based correction movements are employed to
remedy the error until the target is reached. The model can be used
to justify the design of many GUI selection techniques [5, 17]. For
example, techniques have decreased 𝐷𝑒 in the rapid movement im-
pulse and increased𝑊𝑒 during the correction phase to enhance user
performance [5]. They have also used fast modalities (e.g., gaze) to
cover for 𝐷 and more precise modalities (e.g., hand) to fine-tune
for𝑊 , because the later stages of the movement is supervised by
the visual feedback [46].

Although the models describe the formulation of goal-directed
movement, they do not explain the underlying control processes
that lead to this specific formulation. As a result, it is challenging
to derive new designs from these models, as the mechanisms by
which the processes might influence or alter a movement remain
unclear [20]. Themultiple process model represents a recent attempt
to characterize the control processes involved before and during
movement.

2.3 The Multiple Process Model
The multiple process model of goal-directed reaching was intro-
duced by Elliott et al. in 2010 [23] and updated in 2017 [26]. Based
on extensive experimentation, the authors realized that while there
are two main, identifiable components in most reaching movements
(i.e., the ballistic and correction parts), multiple processes could
give rise to these components. The key processes are: pre-planning,
impulse control, and limb-target control.

Pre-planning occurs before initiating a goal-directed movement
to encode relevant information, like perceived target size and dis-
tance, which will later influence the generation of motor commands,
such as the required force. The planning process aims to aid the
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optimal decision of movement speed, accuracy, and also impor-
tantly, energy expenditure [24, 26]. For example, motor control
research reveals that users typically undershoot a target with their
primary movements because overshooting is more costly to cor-
rect [25, 27]. Notably, the planning and optimization process also
considers prior knowledge of, for example, error feedback from
previous trials [80] and the availability of online feedback through-
out the movement [26, 39] (e.g., the presence of a cursor and the
visual indication of hovering on a target in GUI). Therefore, when
designing a GUI technique, it can be crucial to determine how such
feedback may influence users’ movement strategies.

Impulse control and limb-target control are two processes that
govern an ongoing goal-direct reaching movement. The impulse
control process compares the actual velocity and direction of a limb
(or an end effector such as a cursor) to a user’s expectations about
the limb trajectory [26, 71]. The limb-target control process exerts
discrete error reduction by assessing the relative positions of the
limb and the target [26, 61, 67, 71]. While impulse control begins
almost immediately after movement initiation, limb-target control
relies on feedback-based processes that unfold later during the
movement. The processes suggest that users will likely adjust their
movement dynamics when the end effector or the target context
changes.

To create interfaces with better usability [44], many GUI selec-
tion techniques modify such (visual) information constantly. For
instance, selection techniques may dynamically adjust the cursor
movement speed [12, 47, 60] or snap/warp the cursor position [85]
to enable faster or more precise selection, essentially influencing
the impulse control process. They may also enlarge the size of a tar-
get [50] or the cursor [5, 34] or expand a cluster of objects [29, 35, 84]
during cursor movements, which could be relevant to limb-target
control process. Consequently, it can be essential to consider how
such changes influence user movements, which are governed by
impulse and limb-target control, and how to leverage these control
processes.

3 Research Overview
This research aims to derive selection techniques in GUIs based on
the multiple process model [23, 26]. We deduced how the control
processes, including pre-planning, impulse control, and limb-target
control, may influence the user’s movements and performance if
we modify specific GUI elements, including visual feedback, cursor
position, and target position. Based on these deductions, we derived
three selection techniques that take advantage of these control pro-
cesses to improve object selection on GUIs. We then pre-registered
our assumptions, techniques, and evaluation methodology (i.e., task
scenarios, metrics, and analysis procedure) to prepare for hypoth-
esis testing. After that, we conducted three crowdsourcing-based
pointing studies to verify whether our designs could bring mean-
ingful improvements to HCI tasks.

3.1 Assumptions and Techniques
Here, we present an overview of the theoretical assumptions and
the techniques to help readers grasp the core ideas. A more detailed
explanation will follow in the subsequent sections.

3.1.1 Study 1: invisible cursor and indication feedback. We posit
that hiding the cursor when selection indication feedback is enabled
(e.g., a target is highlighted) allows faster selection than showing
the cursor all the time. The reason is that the former eliminates the
lingering between two alternative strategies (triggering a selection
based on the indication feedback vs. manually placing the cursor to
a designated location within the target). Cloaking hides the cursor
based on this assumption.

3.1.2 Study 2: cursor snapping. We posit that introducing a cursor
snap at the beginning of a selection movement can seamlessly
shorten the aiming distance and, therefore, the selection time. The
reason is that the impulse control process can quickly detect the
mismatches between the expected and actual cursor velocity and
correct the positional and directional deviations caused by the snap.
Pulsing is developed and fine-tuned based on this assumption.

3.1.3 Study 3: clustered object selection. Weposit that expanding an
object cluster during a selection movement allows users to redirect
their ongoing movement towards the intended target, which can
reduce their selection time and cursor movement distance. The rea-
son is that the limb-target control process can reduce the positional
difference between the cursor and the target on the fly. Unfurling
is derived from this rationale for selecting clustered objects.

3.2 Methodology
After developing the hypotheses and designing the techniques,
we formulated the task scenarios and analysis procedure and pre-
registered them on the Open Science Framework (OSF) to ensure
transparency and reproducibility. The pre-registration is publicly
accessible at https://doi.org/10.17605/OSF.IO/NW2GK. The tech-
niques were tested in pointing tasks through crowdsourcing.

3.2.1 Testbed. The testbed is a slightly modified version of Fitts’s
Ring [73], as demonstrated in Figure 1. The targets are distributed in
a circular manner. The cursor starts inside a red circle, and a target
appears when the circle turns green. This is conditioned on the
cursor stayingwithin a small starting circle for 0.5 seconds to ensure
the selection starts with minimal movement. The starting positions
follow a clockwise order (𝑁 = 0, 1, ..., 8), and the target is located at
the opposite side of the ring, with the number 𝑇 = (𝑁 + 5) MOD
9. Once the target is selected, a trial is completed, and the cursor
needs to move to the next starting position. Importantly, a correct
selection of the target is required to proceed to the subsequent trial;
this controls selection errors.

The original Fitts’s Ring [73] assumes the next starting position
is the current target position. This does not work for our studies
because the effective distances and widths are significantly shifted
due to the selection techniques applied, thus the “ideal” starting
position of the cursor might not be centered on a target as expected.
Therefore, we place the new starting position at the opposite side of
the movement direction to minimize its impact on the current selec-
tion. In the three user studies, target- and cursor-related parameters
were adjusted for different task purposes.

3.2.2 Crowdsourcing study. Participants were recruited from Pro-
lific, a crowdsourcing platform. This recruitment method enables
us to obtain a diverse sample with various age groups. Participants

https://doi.org/10.17605/OSF.IO/NW2GK
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Figure 1: The basic version of the testbed that will be adapted for different task purposes in the three user studies (left). The
cursor begins inside a red circle, which turns green with a countdown timer. The objective is to select a circular target (middle).
After selecting the target, the cursor needs to travel to a new red circle to start the next trial (right). The cursor’s starting
positions follow a clockwise order.

may use different mouses (e.g., form factors, DPIs, and transfer func-
tions) and screens (e.g., size and resolution) for completing the task.
This diversity is crucial for assessing the real-world applicability
and effectiveness of the techniques. Prior to conducting the studies,
we had decided to recruit 34 participants for each one of them1.

3.2.3 Study procedure. Participants first accepted the task. After
reading the consent form and completing a demographic ques-
tionnaire, they were directed to a WebGL application. There, they
calibrated their cursor speed using a slider to a preferred setting,
aiming to reach four corners of the screen quickly and precisely. Fol-
lowing calibration, they proceed to the formal experiment, which
included practice sessions and formal data collection sessions. Af-
ter each trial, the performance data and the cursor trajectory data
(requested at 100 Hz) were synchronized to an online database2.

3.2.4 Analysis procedure. We first excluded data of participants
who had not completed the study. Next, we discarded outliers where
selection times were more than three standard deviations above
or below the mean (𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑) for each participant and condi-
tion. We considered these trials as instances where a participant
was distracted. We then averaged the trial repetitions per partic-
ipant per condition. Afterwards, we applied repeated-measures
ANOVA (RM-ANOVA) to examine statistically significant effects
and Bonferroni-adjusted post-hoc analysis for pairwise compar-
isons. If the data significantly deviated from a normal distribution,
as indicated by Q-Q plots, we transformed the response variable
accordingly, for example, through log transformation. When the
sphericity assumption was violated, as indicated by Mauchly’s test
for sphericity, we used the Greenhouse-Geisser correction. Addi-
tionally, we calculated effect size measures, including generalized
eta-squared (𝜂2

𝐺
) for RM-ANOVA and Cohen’s d for comparing

two groups. In studies involving speed profile analysis, we used a

1We used G*Power to estimate the required sample size for our studies. We chose
within-subject repeated-measures ANOVA with the following settings: effect size
𝑓 = 0.25 (medium size [19]), 𝛼 error probability = 0.05, power = 0.8, number of groups
= 1 (no between-subject factor), number of measurements = 2 (a new technique vs.
a baseline), correlation among repeated measures = 0.5 (default), and nonsphericity
correction 𝜖 = 1 (default). Note that this estimation could be conservative based on
our study settings, as an increase in the number of measurements or the correlation
among those measures could improve statistical power, thereby reducing the required
sample size.
2Although the data sampling rate was set to 100 Hz, the actual refresh rate may vary
depending on the computer used by each participant.

Savitzky-Golay filter [30, 69] with a 4th-degree polynomial (filter
length = 11) to smooth the speed data.

4 Study 1: Invisible Cursor and Indication
Feedback

The multiple process model indicates that users are inclined to
pre-plan their movements based on available information prior to
executing them. The pre-planning does not just aim to minimize
time and maximize accuracy but also to optimize energy expen-
diture [26]. Previous research in motor control has indicated that
the pre-planned movement strategy could vary according to differ-
ences in, for example, input devices [15], target features (e.g., sizes,
distances) [25, 49], user characteristics (e.g., age groups) [78], and
visual feedback [22]. One design consideration that is crucial for
GUI is how the presentation of semantic feedback (i.e., convey what
the system knows about the user input [42]) during the selection
process may influence pre-planned strategies.

In GUI target selection, two common types of semantic feed-
back are cursor position [74] and the object under selection indica-
tion [2, 53]. A selection cursor is often visible during the movement
to illustrate where the user is currently pointing, particularly for
relative input devices like a mouse that sense only changes in posi-
tion (i.e., not absolute positions) [42]. Selection indication feedback,
like highlighting the pointed object or its bounding box [53], is also
often deployed and thought to be helpful. It conveys which object
the system “thinks” a user is about to select, allowing the user to
verify and confirm their choice.

However, our theoretical assumptions suggest it might not al-
ways be beneficial to show these two types of feedback together,
as the presence of the cursor is no longer necessary for selecting
the intended target when indication feedback is displayed. The
assumptions motivate a technique called Cloaking, which hides the
selection cursor when selection indication feedback is displayed.
Cloaking can be especially helpful for more recent predictive sys-
tems [41, 57, 81] that aim to show such feedback even earlier than
a user has manually moved the cursor onto the target. In the fol-
lowing subsections, we first illustrate why the Cloaking technique
might work based on its theoretical assumptions. We then present
a study to validate the technique’s effectiveness and discuss the
empirical results.
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Always-Visible Cursor Cursor Cloaking

Figure 2: A user plans to move a cursor to select a target icon (left). With an always-visible cursor, users prepare two competing
strategies: either trigger the selection when the target is highlighted or manually move the cursor within the target’s boundary
(middle). Cloaking eliminates the second strategy, leaving only the choice to trigger the selection when the target is highlighted
(right).

4.1 Cloaking and Its Theoretical Assumptions
To select a target in a GUI, users first generate a movement impulse
to bring the cursor to the vicinity of the target. They then align the
cursor with the target location and press the selection trigger once
the target is highlighted (i.e., ready to be selected). The target could
be highlighted because the cursor is within the visual boundary of
the target or even before the cursor reaches it based on predictions
made by selection facilitation mechanisms [6, 81] or when the
effective size of the target is larger than its visual size [34, 76, 83].

With a visible cursor, users prepare two competing strategies
to ensure optimal task completion. The first strategy is to rely on
the manual control of the cursor (i.e., placing the cursor to a desig-
nated location within the target boundary). The second strategy is
to respond to the selection indication feedback by triggering the
selection directly without moving the cursor further. When the tar-
get becomes highlighted, the rapid decision of choosing a specific
strategy can be considered as a decision diffusion process [32, 63],
which requires time to implement and respond. The convergence
rate to a decision (i.e., the drift rate) depends on the pre-determined
and perceived advantage of one choice over the other (e.g., through
learning, users might find one choice is significantly better than
the other, so the converging speed will be much faster).

We propose a technique named Cloaking (see Figure 2) to elimi-
nate the time-consuming decision process between the two strate-
gies: The cursor is visible during the movement but fades away as
soon as the target is highlighted. If the cursor becomes invisible,
pressing the trigger as soon as the target is highlighted is always
optimal for task completion—this simplifies the selection strategy
compared to an always-visible cursor.

Therefore, it is likely that users will be more responsive to selec-
tion indication feedback when using Cloaking. In other words, the
response to such feedback will be faster with Cloaking, resulting in
a shorter response time than an always-visible cursor. If selection
indication feedback is beneficial, like when a selection facilitation
technique is applied [41, 81, 83], Cloaking should also reduce task
completion time compared to an always visible cursor.

4.2 Study Design
The study employs a within-subject design with three independent
variables: technique (2 levels), facilitation extent (2 levels), and task

difficulty (3 levels). Two dependent variables are used to evaluate
user performance: response time and completion time.

4.2.1 Independent variables. The primary aim of the study is to
compare Cloaking and an always-visible cursor. Additionally, we ex-
plore two crucial factors related to task settings—facilitation extent
and task difficulty—that might influence the relative performance
of the techniques.
• Technique: Cloaking and Always-Visible Cursor (Baseline).
• Facilitation extent (FE): the extent to which a selection facilitation
mechanism is applied relative to the distance between the start
and target positions. In this study, we consider two levels of FE,
where FE = {0, 0.2}. FE = 0 means that the target is highlighted
and selectable only if the cursor is within the boundary of the
visual target. In this case, Cloaking is supposed to outperform the
baseline if it can eliminate the necessity of fine-tuning the cursor
towards a designated location within the target (e.g., the target
center). FE = 0.2 means that the target becomes highlighted and
selectable when the cursor is within a circular area centered on
the target, with a radius equal to 20% of the distance between the
start and target positions. That is, a candidate target is predicted
and displayed once the cursor has traveled around 80% of the
distance—this seems achievable with previous techniques [34]
and target prediction models [18, 41, 81]. Cloaking should boost
the usefulness of facilitation techniques when the target becomes
selectable before the cursor reaches it.

• Task difficulty: the combination of target distance 𝐷 and target
size𝑊 , which determines how easy or hard it is to complete a
selection task. The task difficulty pairs are {(8, 0.78), (5.55, 0.37),
(8, 0.37)} in this study3. If we quantify them as index of diffi-
culty [73] through 𝐼𝐷 = log2 (𝐷/𝑊 +1), then the ID ≈ {3.5, 4, 4.5}.
A higher ID typically means the task is overall more difficult. In
our case, decreasing 𝐷 can diminish the usefulness of the facilita-
tion technique (because of how we calculate FE), and decreasing
𝑊 reduces the necessity of fine-tuning the cursor position within
the target. Both are likely to reduce the performance difference
between Cloaking and the baseline. We have decided to vary this

3Note that the 𝐷 and𝑊 values are presented on a relative scale. Variations in display
settings, such as screen and window size, can lead to differences in the absolute number
of pixels. Additionally, variations in mouse settings, such as DPI, can influence the
actual movement distance of a computer mouse. We account for these differences as
user-related factors, reflecting a typical real-world condition. This presentation stays
the same for all studies.
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Table 1: Results from RM-ANOVA examining the impact of Technique, Technique × Facilitation Extent (FE), and Technique ×
Task Difficulty on response time and completion time. Significance levels (Sig?) are based on 𝛼 = 0.05.

Dependent Variable Independent Variable 𝑑 𝑓𝑛𝑢𝑚 𝑑 𝑓𝑑𝑒𝑛 F p 𝜂2
𝐺

Sig?

Technique 1 33 4.85 .035 .005 Yes
Response Time Technique × FE 1 33 7.94 .008 .006 Yes

Technique × Task Difficulty 2 66 0.14 .870 <.001 No

Technique 1 33 2.07 .160 .001 No
Completion Time Technique × FE 1 33 14.95 <.001 .005 Yes

Technique × Task Difficulty 2 66 0.16 .850 <.001 No

factor at three levels to avoid lengthy studies that could cause
fatigue and user disengagement.

4.2.2 Dependent variables. We hypothesize that Cloaking will out-
perform the baseline (i.e., an always-visible cursor) with lower
response time and completion time. These measurements are thus
treated as dependent variables of this study.
• Response time: the time between when the target is highlighted
(i.e., indication feedback is enabled) and when the system regis-
ters a correct selection (i.e., selection completion).

• Completion time: the time between selection initiation (i.e., the
cursor exits the starting circle) and selection completion.

4.2.3 Trial sequence. The study contains 12 experimental condi-
tions (= 2 techniques × 2 FEs × 3 task difficulties), each repeated
9 times (one complete Fitts’s Ring). The FEs are nested within the
techniques (i.e., Both FEs are tested within one technique before in-
troducing the other). The task difficulties are further nested within
the FEs. The orders of all the independent variables are random-
ized. Before starting each technique and each FE, participants are
explicitly informed about the existence of FE (i.e., the highlights
appear before or when the cursor is on the target). They practice
9 trials with the easiest 𝐷 and𝑊 combination (𝐼𝐷 = 3, 𝐷 = 5.55,
𝑊 = 0.37) to get used to the technique and FE.

4.3 Analysis and Results
We collected 3672 trials of data (= 34 participants × 2 techniques ×
2 FEs × 2 task difficulties × 9 repetitions). This study included 15
women and 18 men, with a mean age of 29.4 years (std = 7.6). No
trial was removed based on our data exclusion criteria. The analysis
results are summarized in Table 1 and Figure 3. Note that we report
only the main effects and interaction effects related to techniques,
as our focus is on the effectiveness of the techniques and how it
may vary under different experimental conditions. Additionally,
the boxplots present transformed rather than raw (absolute) values.
More detailed statistical results can be found in the supplementary
material (same for the following studies).

4.3.1 Response time. The response time data were transformed
with a natural logarithm ln(𝑥) because response times often follow
a log-normal distribution. This transformation accounts for the fact
that participants can take varying long time to complete a trial, but
there are limits on how fast they can be. Results from RM-ANOVA
showed that the techniques significantly influenced response time
in general (𝑝 = .035). An interaction effect of Technique × FE

p=.001, d=.33 p=.813, d=-.02 p=.010, d=.48 p=.138, d=-.15

*** **ns ns

Figure 3: Boxplots display the response time and the comple-
tion time across the two levels of Technique and Facilitation
Extent (FE). The colored dots with a black outline indicate
the mean value for each condition. The response time was
transformed with a log transformation, and the completion
time was transformed with a Yeo-Johnson transformation
(𝜆 = −1.926). Statistical significance is denoted by p-values
derived from pairwise comparisons, with Cohen’s 𝑑 values
also reported. The following symbols are used to indicate
significance levels: ns (not significant): 𝑝 > 0.05, **: 𝑝 ≤ 0.01,
and ***: 𝑝 ≤ 0.001.

(𝑝 = .008) suggested that the response time of different techniques
depends on FE. The post-hoc analysis indicated that the response
time of Cloaking was significantly lower than an always-available
cursor (𝑝 = .001) when FE = 0.8 (i.e., the selection indication
feedback appeared before the cursor reached the target).

4.3.2 Completion time. The completion time datawere transformed
using a Yeo-Johnson transformation (𝜆 = −1.926) because the Q-Q
plot indicated heavy tails in the data, even after a log transforma-
tion. Results from RM-ANOVA suggested an interaction effect of
Technique × FE (𝑝 < .001). Specifically, Cloaking led to significantly
lower completion time than an always-available cursor (𝑝 = .010)
when FE = 0.8.
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With Multiple TargetsPulsing

Snap!

Pulsing Zone Correction Zone

Figure 4: A user moves a cursor to select a target (left). Pulsing detects the movement impulse and snaps the cursor to “skip”
the early distance that is supposed to be covered by the movement impulse. The user then continues the cursor movement to
hit the target as usual (middle). The extent of snapping depends on the distance between the cursor and the target, and the
direction of snapping depends on the initial movement direction of the cursor (right).

4.4 Summary
The study suggests that, as compared to an always visible cursor,
Cloaking can improve users’ responsiveness to selection indication
feedback and enable faster selection when the feedback is enabled
before the cursor reaches the target (e.g., when a selection facilita-
tion mechanism is applied to predict an intended target). There is,
however, no apparent benefit of hiding the cursor after the cursor
has already entered the visual boundary of the target.

5 Study 2: Cursor Snapping
Impulse control delineates the process of users comparing the actual
velocity and direction of the end effector to their internal represen-
tations, primarily within the first sub-movement [26]. Such online
regulation happens quickly (as little as 85-100ms) and continu-
ously and is considered to be too rapid for a new action plan [26].
The existence of such a process is, for instance, suggested by mo-
tor control studies that displaced the background of the cursor
and the target. The displacements create an illusion of the cursor
moving faster or slower than expected, leading users to extend
or shorten the movement impulse [33, 62]. The movement cor-
rection/adjustment directed by such a process seems to be rather
implicit: research has found that cursor jumps introduced early in
a movement can be automatically corrected later without being
noticed by the users [66, 68].

Many GUI techniques shift the constant mapping of the input
device and the cursor during selection movement to improve user
performance. For example, we have mentioned techniques that
dynamically increase the cursor gain (i.e., a cursor speed multi-
plier) [12, 17] to cover the long pointing distance to faraway targets
quickly. Cursor snapping techniques such as MAGIC pointing [85]
bring the cursor directly to the vicinity of a predicted target (that
is indicated by eye gaze) to eliminate the effortful long-distance
manual pointing. Other methods snap the cursor to the target when
they are close by to allow precise cursor landing [8, 11].

In this study, we discuss a technique called Pulsing that snaps
the cursor early in a movement to shorten the selection distance.
Unlike techniques that increase the cursor gain, Pulsing skips the
early distance-covering movement entirely and relies on the low-
effort impulse control process to “correct” any deviations caused by
the snap. Unlike techniques such as MAGIC pointing, Pulsing does
not rely on additional modalities (e.g., eye gaze) to predict a target

region. Through our theoretical assumptions, we determine the
extent of snap that allows seamless corrections. In the following,
we detail these assumptions and present a study to evaluate Pulsing.

5.1 Pulsing and Its Theoretical Assumptions
Pulsing is a GUI selection technique that snaps the cursor towards its
initial movement direction at the beginning of a selectionmovement
to shorten the travel distance to a target, thereby reducing the
selection time (see Figure 4). Because the early cursormovement can
be noisy and does not always point directly towards the target [28],
we introduce a concept called the correction zone that allows users
to “correct” any positional or directional deviations caused by the
snap. The correction zone represents an area where every point
is within 𝑅𝑐𝑧 distance. 𝑅𝑐𝑧 is proportionally defined based on the
distance between the initial cursor position and the target. For
instance, 𝑅𝑐𝑧 = 20% means that 20% of the original cursor-target
distance is used for movement correction. The rest of the space
is called the pulsing zone, and the cursor can only snap to the
boundary of the two zones. As a straightforward definition, the
pulsing zone for a specific target is 𝑅𝑝𝑧 = 1 − 𝑅𝑐𝑧 .

We outline two key considerations for determining an appropri-
ate 𝑅𝑝𝑧 . First, a larger 𝑅𝑝𝑧 (i.e., a smaller 𝑅𝑐𝑧 ) can save more cursor
travel distance if a snap occurs. However, with a larger 𝑅𝑝𝑧 , Pulsing
is less likely to trigger a snap because it is more challenging for the
noisy initial movement direction to intersect with the zone bound-
ary. Consequently, although a larger 𝑅𝑝𝑧 could potentially save
more distance, the likelihood of a snap occurring also decreases.
This suggests an obvious tradeoff when optimizing 𝑅𝑝𝑧 .

Our second consideration focuses on how users adjust their
movement after the cursor snap. The impulse control process quickly
begins to correct the mismatch between the expected and perceived
cursor velocity [66, 68]. This was achieved by applying an early
braking force as the cursor travels faster than expected due to the
snap and by regulating the direction of the cursor movement. How-
ever, the correction process takes time to complete; otherwise, later
in the movement, additional sub-movements that involve greater
top-down control may be needed to explicitly correct the endpoint
error resulting from the initial impulse [14, 26, 68]. Such conditions
are less ideal, as the technique no longer functions seamlessly and
could lead to additional movements required to correct errors.

Our conservative estimation is that the maximum of 𝑅𝑝𝑧 should
be 50%. In other words, at least half of the cursor-target distance
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Table 2: Results from RM-ANOVA examining the impact of Technique and Technique × Task Difficulty on completion time,
cursor total distance, and explicit correction time. Significance levels (Sig?) are based on 𝛼 = 0.05.

Dependent Variable Independent Variable 𝑑 𝑓𝑛𝑢𝑚 𝑑 𝑓𝑑𝑒𝑛 F p 𝜂2
𝐺

Sig?

Completion Time Technique 3 99 42.36 <.001 .055 Yes
Technique × Task Difficulty 6 198 1.26 0.278 .001 No

Cursor Total Distance Technique 2.33 76.81 12.75 <.001 .110 Yes
Technique × Task Difficulty 4.41 145.57 3.63 .006 .017 Yes

Explicit Correction Time Technique 3 99 43.79 <.001 .063 Yes
Technique × Task Difficulty 6 198 1.31 .254 .001 No

should be used for correction. This is because the process that in-
volves greater top-down control typically happens after reaching
the peak velocity [26]. Assuming an ideal movement with a per-
fectly symmetric speed profile [80], the peak velocity occurs at the
50% distance point. Thus, the deviations caused by the snap should
be at least partially corrected before that to enable a seamless tran-
sition. When 𝑅𝑝𝑧 = 50%, a snap can occur if the initial movement
direction is within arcsin( 12 ) = 30◦ from the cursor-to-target vector.

5.2 Study Design
The study uses a within-subject design with two independent vari-
ables: technique (4 levels) and task difficulty (3 levels). We examine
cursor movement distance and completion time to evaluate the
effectiveness of the techniques. We also analyze the explicit correc-
tion time to examine whether the cursor snap is seamlessly blended
into the whole movement.

5.2.1 Independent variables. The study aims to compare Pulsing
(with three different snap extents) and regular pointing (i.e.,NP). We
expect the relative performance of the techniques to be significantly
influenced by task difficulties (i.e., target distances and sizes).
• Technique: Pulsing-25, Pulsing-50, Pulsing-75, and NP (baseline).
For the Pulsing techniques, the number behind indicates the snap
extent (𝑅𝑝𝑧 ). For instance, Pulsing-25 means that 75% (=1−25%) of
the cursor-target distance is used for correction. In other words,
a smaller number indicates a shorter snap distance.

• Task difficulty: target distance 𝐷 and target size𝑊 , which de-
termine the difficulty of a selection task. In this study, the task
difficulty pairs are {(8, 0.78), (5.55, 0.37), (8, 0.37)}, same as the
first study. The corresponding IDs are {3.5, 4, 4.5}. This factor
influences the amount of time the impulse control process has to
“correct” the movement after introducing Pulsing. We expect that
a longer correction distance will provide more time for adjust-
ments, and a larger target will reduce the need for corrections,
leading to a more seamless integration of the snap into the overall
movement.

5.2.2 Dependent variables. We hypothesize that Pulsing-25 and
Pulsing-50 can seamlessly shorten the movement distance, thus
reducing the selection time, as compared to Regular. Pulsing-75
may decrease performance compared to the two previous Pulsing
techniques and may extend the time for explicit correction. There-
fore, we examine the performance of the techniques in terms of
completion time, cursor total distance, and explicit correction time.

• Completion time: the time from selection initiation to completion.
• Cursor total distance: the total (accumulated) distance traveled
by the cursor from selection initiation to its completion.

• Explicit correction time: the time between the end of the primary
sub-movement to selection completion. The completion of the
movement impulse is determined by a previous parsing algorithm
(cf. [51]) that detects (a) velocity zero-crossing from positive +
to negative -, (b) acceleration zero-crossing from - to +, and (c)
jerk zero-crossing from + to -.

5.2.3 Trial sequence. The study consists of four blocks, each as-
sessing one of the techniques in the three task difficulties. The order
of the techniques and task difficulties is randomized, and each task
difficulty is repeated 9 times. Before starting each technique, par-
ticipants practice 9 trials of the technique with 𝐼𝐷 = 3 (𝐷 = 5.55,
𝑊 = 0.37).

5.3 Analysis and Results
We collected 3669 trials of data (= 34 participants × 4 techniques × 3
task difficulties × 9 repetitions − 3 missing trials). The missing trials
were caused by the Internet connection issues to the online database.
The study included 14 women and 20 men. The participants’ mean
age was 31.8 years (𝑠𝑡𝑑 = 9.0). No trial was removed based on the
data exclusion criteria. The analysis results are summarized in
Table 2 and Figure 5.

5.3.1 Completion time. The completion time datawere transformed
with a Yeo-Johnson transformation (𝜆 = −2.271). The results from
RM-ANOVA showed a significant effect of Technique (𝑝 < .001).
The post-hoc analysis indicated that NP and Pulsing-25 led to the
shortest completion time (all 𝑝 < .009), with no statistically signifi-
cant difference between them (𝑝 = .954). Pulsing-50 further led to
shorter completion time than Pulsing-75 (𝑝 < .001). No interaction
effect of Technique × Difficulty was identified (𝑝 = .278).

5.3.2 Cursor total distance. The cursor total distance data were
transformed through a Yeo-Johnson transformation (𝜆 = 1.090).
Results from RM-ANOVA suggested a significant main effect of
Technique (𝑝 < .001). The post-hoc tests showed that Pulsing-25
and Pulsing-50 led to the shortest cursor movement distance (all
𝑝 < .012), with a marginally significant difference between them
(𝑝 = .082).NP resulted in the longest cursor distance on average, but
its difference with Pulsing-75 was marginal (𝑝 = .081). There was an
interaction effect of Technique×Difficulty (𝑝 = .006). Most patterns
remained consistent across different difficulty levels. Noticeably,
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Figure 5: Boxplots display the completion time, the cursor total distance, and the explicit correction time of Technique across
Difficulty Level. The colored dots with a black outline indicate the mean value. All data were transformed through Yeo-Johnson
transformations (corresponding 𝜆 = −2.271, 1.090, and −2.157). Statistical significance is denoted by p-values derived from
pairwise comparisons, with Cohen’s 𝑑 values also reported. The following symbols are used to indicate significance levels: ns:
𝑝 > 0.05, *: 𝑝 ≤ 0.05, **: 𝑝 ≤ 0.01, and ***: 𝑝 ≤ 0.001.

Figure 6: Lineplot of the average cursor movement speed
between 0 and 0.5 seconds after exiting the starting circle
(also after the snap in the Pulsing techniques).

Pulsing-75 did not have statistical difference in cursor total distance
compared to NP when the target is small and close (𝑝 = .950),
but led to shorter distance in the other two difficulty levels (both
𝑝 < .035).

5.3.3 Explicit correction time. The explicit correction time data
were transformed with a Yeo-Johnson transformation (𝜆 = −2.157).
RM-ANOVA and post-hoc tests showed patterns consistent with
those observed in completion time.

5.3.4 Speed profile analysis. We examined the speed profiles of
the techniques to further investigate the presence of explicit correc-
tions. Figure 6 presents the average cursor movement speed across
all trials of a technique between 0 and 0.5 seconds after exiting the
starting circle (also after the snap). The results indicated that Pulsing

led to a slightly lower average speed in the first sub-movement, and
a more extended snap resulted in a lower peak velocity. This sug-
gested that a more extended snapmay have encouraged participants
to pre-plan a more conservative strategy. Pulsing-50 and Pulsing-75
led to a noticeable secondary peak after the first sub-movement,
which represents explicit corrections.

5.4 Summary
The study suggested that Pulsing-25 could reduce cursor movement
distance compared to regular pointing without requiring additional
effort for explicit corrections. The completion time and speed profile
of Pulsing-25 and regular pointing were comparable. This finding in-
dicated that Pulsing-25 could shorten cursor movement seamlessly.
Pulsing-50 and Pulsing-75 could also reduce cursor movement dis-
tance, but at the cost of more time for explicit correction and longer
completion time.

6 Study 3: Clustered Object Selection
Limb-target control minimizes the error vector between the cursor
and the target position, sometimes resulting in additional, discrete
corrective sub-movements [26]. The process could involve an early
“automatic/unconscious” component and a later “voluntary” com-
ponent [67]. For instance, motor control research that adjusts the
target’s size or position after movement initiation found that par-
ticipants started compensating for the perturbation mostly within
180-200 ms (equivalent to visual reaction time), but this compensa-
tion could occur as quickly as 100 ms [40, 58, 59, 61].

Target context may also change in GUIs. For example, interrup-
tive notifications may bring new contextual information (e.g., a
signal to stop) during selection or reaching movements [65, 75, 81],
and target expansion techniques that enlarge the target when the
cursor approaches it (like Dock Magnification on macOS) can en-
able faster target acquisition [50]. More relevant to this study are
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+
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Figure 7: A user moves a cursor towards a target located within a cluster of objects (left). A progressive refinement technique
expands the object cluster once the user reaches it, allowing for a more detailed selection of the target (middle). In contrast,
Unfurling expands the object cluster based on cursor approaching movements to facilitate low-cost redirection towards the
target location (right).

methods for selecting a target within a cluster of objects, involv-
ing expanding the objects into new locations for disambiguating
multiple overlapped objects. The re-arranged objects create a new
target context for the later, fine-grained selection of the target (see
Figure 7). Such concepts have been applied in, for example, visual
menus [4] and other techniques [29, 35, 84] that require two or
more steps of selections to acquire the final target (we refer to them
as progressive refinement, PR, techniques hereafter).

We propose a technique called Unfurling for clustered object
selection. In contrast to PR techniques that often require multiple
selection steps (e.g., clicking to expand the target cluster and then
reaching the target), Unfurling expands potential object clusters
during early cursor movements. It leverages the limb-target con-
trol process to redirect an ongoing movement towards the target
position, without going through a sequential selection and decision
process like existing PR techniques. We detail our theoretical as-
sumptions in the following subsection. We then report and discuss
the results of the user study.

6.1 Unfurling and Its Theoretical Assumptions
PR is a powerful family of techniques for precise target selection,
especially in cases of overlapping and clustering objects [29, 84]. A
typical process begins by reaching a cluster of objects and perform-
ing a button click to expand the cluster. This expansion redistributes
the objects into distinct regions, narrowing down the intended tar-
get for a subsequent selection. In more complicated scenarios, new
clusters may appear, and further expansions are performed until the
final target is acquired [3]. While such techniques could improve
selection precision, the step-by-step process (i.e., first selecting a
cluster, then the target) could be further optimized.

The limb-target control process suggests that users aim to mini-
mize the positional differences between the cursor and the target
during movement. More specifically, the process can be associated
with a “voluntary” visual reaction (180-200 ms) or an even faster
“automatic” or “hard-wired” component when associated with posi-
tional shifts of the target [38, 67, 72]. While the exact conditions
under which a voluntary or an automatic response will be triggered
are still being explored, it seems a low-cost solution to displace the
target position during an ongoing goal-directed movement (rather
than after completing a movement like in PR techniques).

Unfurling is motivated by the aforementioned conclusion. In-
stead of requiring users to complete a selection with multiple steps

like PR techniques, Unfurling expands the relevant object clusters
during an ongoing movement (see Figure 7). The “redirection” in-
duced by the limb-target control process theoretically integrates
the multiple selection steps into a selection movement with a sin-
gle target in mind. We infer that Unfurling can reduce selection
time and cursor movement distances compared to a typical PR tech-
nique. The null hypothesis is that if the limb-target control process
cannot alter a pre-planned selection movement, the performance
and movement trajectory of Unfurling should be similar to a PR
technique.

To estimate the relevancy of an object cluster, Unfurling needs to
be combined with target prediction methods [41, 83, 85] or distance-
based thresholding [34]. In this study, we simulate two strategies.
The first expands an object cluster immediately after movement
initiation (UStart), like in cases where we could predict a possible
cluster with gaze before hand movement [85]. The second expands
a cluster after the velocity peak of a movement impulse (UPeak)
when the prediction methods become more confident about the
intended movement direction [81]. This setting also aligns with a
theoretical interest: a “voluntary” reaction typically occurs after the
velocity peak, whereas the “automatic” response can occur before
it [26, 67].

6.2 Study Design
The study uses a within-subject design with two independent vari-
ables: technique (3 levels), cluster density (2 levels), and task diffi-
culty (2 levels). The dependent variables are completion time and
total cursor distance.

6.2.1 Independent variables. The goal of the study was to compare
UStart, UPeak, and a PR technique. The effectiveness of all the
techniques is expected to be influenced by cluster density and task
difficulty. Therefore, we systematically vary these parameters to
assess the consistency of the observed results.

• Technique: UStart, UPeak, and a PR technique. The PR technique
requires the cursor to “touch” a cluster to expand it, and then
the user clicks on the intended target for selection. For experi-
mental control purposes, the PR technique is slightly modified
based on the previous literature, which might require multiple
button clicks or swipe gestures to select the target [3, 29, 84]. The
PR technique here can be framed in a similar way as Unfurling:
object clusters are expanded at the very end of a goal-directed
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Table 3: Results from RM-ANOVA examining the impact of Technique, Technique × Cluster Density, and Technique × Task
Difficulty on completion time and cursor total distance. Significance levels (Sig?) are based on 𝛼 = 0.05.

Dependent Variable Independent Variable 𝑑 𝑓𝑛𝑢𝑚 𝑑 𝑓𝑑𝑒𝑛 F p 𝜂2
𝐺

Sig?

Technique 1.55 51.21 77.14 <.001 .117 Yes
Completion Time Technique × Cluster Density 2 66 0.07 .930 <.001 No

Technique × Task Difficulty 2 66 0.26 .770 <.001 No

Technique 2 66 21.89 <.001 .107 Yes
Cursor Total Distance Technique × Cluster Density 2 66 0.45 .637 <.001 No

Technique × Task Difficulty 2 66 0.64 .530 <.001 No

movement, not during it like UStart or UPeak. In our implementa-
tion, UStart expands a cluster upon movement initiation (i.e., the
cursor exits the starting circle). UPeak expands a cluster once the
cursor movement distance descends in three consecutive 0.01s
intervals.

• Cluster density: the number of objects within a cluster. This study
uses cluster density = {2, 4}. All techniques are likely to decrease
their performance as cluster density increases.

• Task difficulty: the combination of distance 𝐷 and width𝑊 that
determines the position and size of the cluster and the targets.
This study sets the task difficulty pairs as {(8, 0.78), (8, 0.37)}.
The corresponding ID = {3.5, 4.5}. The distance from the cluster
center to an expanded object is fixed as

√
2𝑊 . Here, we only vary

the target size, as the limb-target control process is less relevant
to the distance-covering phase of the movement. A larger target
size is likely to require less limb-target control.

6.2.2 Dependent variables. We hypothesize that both UStart and
UPeak will lead to shorter completion time and cursor total dis-
tances, which are the two dependent variables of this study, than
the PR technique.

• Completion time: the time between selection initiation to its
completion.

• Cursor total distance: the total distance traveled by the cursor
from selection initiation to its completion.

6.2.3 Trial sequence. The study comprises 12 experimental con-
ditions (= 3 techniques × 2 cluster densities × 2 task difficulties),
each repeated 9 times. The cluster densities are nested within the
techniques, and the task difficulties are further nested within the
cluster densities. The order of all the factors is randomized. We
also randomly assign the target position within a cluster after clus-
ter expansion. This prevents participants from predicting and pre-
planning for the “new” target location before cluster expansion
and moving directly towards there. Before starting each technique,
participants are explicitly informed about how it works (i.e., the
cluster expands when or before the cursor reaches it) and practiced
9 trials with 𝐼𝐷 = 3.5 (𝐷 = 8 and𝑊 = 0.78).

6.3 Analysis and Results
We gathered 3665 trials of data (= 34 participants × 3 techniques ×
2 cluster densities × 2 task difficulties × 9 repetitions − 7 missing
trials). Based on the results from the demographic questionnaire,
the study sample consisted of 13 women and 21 men. The mean
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Figure 8: Boxplots display the completion time and the total
cursor distance across Technique. The colored dots with a
black outline indicate the mean value. Both completion time
and total cursor distancewere transformedwith Yeo-Johnson
transformations (corresponding 𝜆 = −1.928 and −4.751). Sta-
tistical significance is denoted by p-values derived from pair-
wise comparisons, with Cohen’s 𝑑 values also reported. The
following symbols are used to indicate significance levels: ns:
𝑝 > 0.05 and ***: 𝑝 ≤ 0.001.

age of the participants was 32.1 years (𝑠𝑡𝑑 = 7.6). No trial was
removed based on our data exclusion criteria. The analysis results
are summarized in Table 3 and Figure 8.

6.3.1 Cluster expansion time. The cluster expanded an average
of 0, 0.12, and 0.54 seconds (𝑠𝑡𝑑 = 0, 0.03, and 0.23 seconds) after
selection initiation for UStart, UPeak, and PR, respectively. Note
that the selection initiation timestamp was approximated based
on when the cursor moved outside of the starting circle, which
occurred after the actual movement initiation—this should lead to
a longer actual cluster expansion time.

6.3.2 Completion time. The completion time datawere transformed
through a Yeo-Johnson transformation (𝜆 = −1.928). Results from
RM-ANOVA showed a main effect of Technique (𝑝 < .001). The
post-hoc analysis suggested that UStart and UPeak led to much
shorten completion time than PR (both 𝑝 < .001), with no sig-
nificant difference between UStart and UPeak (𝑝 = .484). Such a
pattern was consistent across different levels of cluster densities
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Figure 9: Lineplot of the average cursor movement speed
between 0 and 0.7 seconds after exiting the starting circle.

and task difficulties, as no significant interaction effect of Technique
× Density or Technique × Difficulty was identified.

6.3.3 Cursor total distance. The cursor total distance data were
transformed through a Yeo-Johnson transformation (𝜆 = −4.751).
The statistical results were consistent with those of completion
time.

6.3.4 Speed profile analysis. Figure 9 presents the average cursor
movement speed across all trials of a technique between 0 and
0.7 seconds after exiting the starting circle. UPeak and UStart fea-
tured salient secondary peaks resulting from the limb-target control
process to redirect one’s movement. The redirection of UStart was
earlier than UPeak. The secondary selection for PR was more spread
out, with users tending to select expanded targets at lower speeds.

6.4 Summary
The study shows that Unfurling, which expands object clusters
during selectionmovements, can reduce completion time and cursor
distance significantly as compared to a progressive refinement (PR)
technique. This finding is consistent across the tested levels of task
difficulty and cluster density. The performance difference between
expanding the object cluster at the start of the movement (UStart)
versus right after reaching peak velocity (UPeak) is not apparent,
while they differ in the resulting speed profiles.

7 Discussion
Wefirst discuss the design implications based on the results from the
three studies. We then reflect on our approach to derive techniques
from theory, and introduce this method as justified concepts.

7.1 Selectively Hiding the Cursor
The Cloaking technique, which hides the cursor when selection
indication feedback is enabled, can facilitate faster selection than al-
ways showing the cursor. Specifically, it works when the indication
feedback is displayed before the cursor reaches the target but not
when the cursor has already entered the target. This contradicts
the common heuristic in HCI of always giving feedback, but aligns
with our theoretical assumption that when the indication feedback

is displayed beforehand, users could be lingering between the two
strategies of placing the cursor within the target as pre-planned or
triggering the selection without moving further. This decision pro-
longs their response time, and therefore the task completion time,
compared to only showing the indication feedback (i.e., Cloaking).

However, when the cursor has entered the target, Cloaking does
not reduce response or task completion time. This could mean that
users do not pre-plan for hitting a specific location within the target
but only check whether the cursor is within the target. Therefore,
both the cursor-within-target and the indication feedback share the
same purpose: demanding the user to trigger the selection as fast
as possible. Because users can rely entirely on either of the visual
feedback to complete the selection optimally, whether the cursor is
hidden or not makes little difference.

The Cloaking technique could benefit GUIs that leverage target
indication feedback to improve performance, for instance, when a
predictive system can accurately provide early indication feedback
of the user’s intended target [41, 81, 85]. Moreover, the technique is
likely to improve selection speed when the effective target bound-
ary is larger than the visual boundary of the target [34, 76, 83].
Notably, this performance improvement compromises users’ ability
to accurately perceive the cursor’s position when indication feed-
back is enabled, which may affect how users select among multiple
targets, especially for relative pointing devices such as a mouse.
Future research could examine how Cloaking works for conditions
with dense targets.

7.2 Snapping the Cursor Position When
Selection Begins

The Pulsing technique, which snaps the cursor along the movement
direction at the beginning of a selection movement, can shorten
the selection distance seamlessly. Pulsing-25, which skips about 1/4
of the original movement distance, is shown to reduce the overall
movement distance without increasing the time needed for explicit
corrections and does not significantly deviate from regular point-
ing in cursor speed profiles. It is empirically demonstrated to be
a promising method to reduce movement distance with little cost
from the user’s side, as the impulse control process could “automat-
ically” correct the errors induced by the snap. Yet, it contradicts the
intuition that snapping further is more beneficial. Increasing the
distance covered by the snap is indeed not always advantageous
with this technique, as it may require additional explicit corrections.
This is evident from the results of techniques that aim to reduce
the initial distance by 1/2 (Pulsing-50) and 3/4 (Pulsing-75).

While Pulsing-25 could reduce the cursor movement distance
compared to regular pointing, its benefit of shortening the task
completion time is not obvious (1.017 seconds vs. 1.024 seconds on
average). It could be because the impulse control process makes
subtle adjustments to the movement, resulting in a slight decrease
in the overall speed of the initial impulse, as indicated by the speed
profiles (Figure 6). It could also be because the mouse is a low-
effort, fast input device, making the effect of Pulsing-25 on reducing
movement time less noticeable. Thus, future research could evaluate
Pulsing-25 with more cumbersome input modalities, such as bare-
hand 3D interactions in mixed reality systems [2]. Additionally,
it would be interesting to analyze how other transfer functions
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that modify speed or position of the cursor (e.g., [12, 17]) may be
affected by the impulse control process.

7.3 Expanding Clustered Objects Early
The Unfurling technique, which expands a cluster of objects early
in a selection movement, can decrease selection time and cursor
movement distance compared to a typical progressive refinement
technique, which requires multiple consecutive selections to nar-
row down the final target. This finding suggests that the limb-target
control process can help reduce the discrepancy between the cursor
and the target positions during a selection movement. No signifi-
cant performance difference was observed between Unfurling-Start,
which expands the cluster at the beginning of the movement, and
Unfurling-Peak, which expands the cluster at the peak velocity of
the movement impulse. Thus, a GUI can utilize a predictive system
that expands the target cluster later in the movement once more
information is available for prediction (e.g., after the peak velocity)
to bring meaningful performance improvement [81]. This makes
Unfurling applicable to different types of GUIs, because predicting
the intended cluster for Unfurling-Start requires, for instance, eye-
tracking, whereas the peak velocity for Unfurling-Peak is always
available to be detected from cursor movements.

Thus, when designing a technique for selecting an object within a
cluster, one might consider applying Unfurling to improve selection
efficiency. However, there are a few practical issues that need to
be accounted for. First, dynamically expanding the target could
introduce more clutter in a complex interface. Therefore, it might
introduce additional distractions if the intended cluster cannot be
predicted accurately. Second, in a real-world application like visual
menus [4], each menu item might be complex and contain text
information, unlike our study, where distinct colors distinguish
the target from the distractors. It is unclear whether users can
effectively process and redirect their movements to items that are
not easily distinguishable from the distractors. Additionally, in
such applications, with sufficient practice and learning, users might
memorize the target location after expansion, potentially increasing
their redirection speed (i.e., their pre-planning will be influenced
by using the technique). Future research could test Unfurling in the
aforementioned scenarios, which differ from our study settings.

7.4 Deriving Techniques from Theory
We next reflect on how we derived selection techniques (i.e., design
instances) from the multiple-process model (i.e., a theory). Motor
control theories aim to understand and predict how selection hap-
pens, while interaction techniques in HCI aim to improve selection.
Because of the distinct aims, it is non-trivial to derive techniques
directly from theory.

In this research, we have managed to derive selection techniques
from the multiple processes model through a set of falsifiable as-
sumptions that are justified based on theories (we name them justi-
fied concepts). To be clear, the justified concepts in this work are

• Study 1: Hiding the cursor when selection indication feedback is
enabled can enable faster selection than showing the cursor all
the time.

• Study 2: Introducing a cursor snap at the beginning of a selection
movement can shorten the cursor movement distance, therefore,
the selection time seamlessly.

• Study 3: Expanding an object cluster during a selectionmovement
allows users to redirect their ongoing movement towards the
intended target, which can reduce their selection time and cursor
movement distance.

These justified concepts seem to operate at a level of abstraction
higher than specific design instances—one could imagine differ-
ent ways to implement the concepts than Cloaking, Pulsing, and
Unfurling, such as by using different criteria to snap the cursor
or expand a target cluster. Similar to a theory, justified concepts
can be falsified and iterated upon (e.g., by introducing boundary
conditions [16], such as those suggested for future research above).
However, they are more specific and lack the generality of theories.

Höök and Löwgren consider knowledge that resides in themiddle
territory between design instances and theories intermediate-level
knowledge [43]. Justified concepts seem to be a type of intermediate-
level knowledge but have distinct features compared to others. Justi-
fied concepts are strictly theory-grounded, unlike design heuristics
that rely on one’s judgment on the quality of a design [54]. We
do not consider justified concepts design guidelines [48] because
justified concepts are falsifiable and may therefore be wrong. Unlike
strong concepts [43], justified concepts are neither design elements
nor abstracted from design instances.

In addition to their uniqueness in formulation, justified concepts
also seem to have distinct characteristics in their evaluation. To val-
idate justified concepts, we first developed techniques (i.e., design
instances) that carefully follow the concept. We then pre-registered
the justified concepts, the technique, and the evaluation method-
ology before conducting the user studies. The reason was that we
did not aim to generate new hypotheses as in exploratory research
but to verify whether the initial logic (i.e., the justified concepts)
actually applies to the technique as in confirmation research. Pre-
registration required us to carefully elaborate on our arguments
in advance and helped distinguish findings from post-diction and
prediction [56].

Based on the study results, an empirically working technique
brought us more confidence in the validity of the justified concepts.
A technique that did not work as expected also offered lessons on
how the theoretical derivations might have failed to work together,
or the justified concepts’ boundary conditions (e.g., under which
scenarios the concepts do not apply) [16]. For example, we learned
that Cloaking is effective only when the indication feedback is
provided before the cursor has reached the target, which motivated
us to refine the concept. Thus, we believe both expected and null
results can pave the way towards more theory-grounded interaction
techniques and concepts that remain interesting to iterate upon,
particularly in terms of their boundary conditions. In this work, we
have demonstrated three examples of how we constructed justified
concepts and techniques and evaluated and discussed them, which
we hope could inspire future endeavors that wish to apply a similar
method.
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8 Conclusion and Future Work
This paper has presented three theory-grounded concepts and se-
lection techniques. Results from crowdsourcing-based pointing
studies show that Cloaking, which hides the cursor when selection
indication feedback is enabled, can reduce feedback response time
and task completion time. Pulsing, which introduces a short snap
at the beginning of a selection movement, can shorten the cursor
movement distance seamlessly. Unfurling, which expands clustered
objects early in the movement to allow on-the-fly redirection to-
wards the final target, can decrease cursor movement distance and
task completion time. We have discussed the design implications
for GUIs based on our assumptions and empirical findings. Lastly,
we reflected upon our approach to derive these techniques from
theory through justified concepts, which are falsifiable assumptions
justified based on existing theories. We have detailed our method-
ology, which involves pre-registration, to validate such concepts
and techniques. Future research can evaluate and apply our con-
cepts and techniques in various contexts, such as mixed reality
systems, and in more complex task settings involving additional
distractors [13, 29]. We also expect that our method of deriving
interaction techniques from theory using justified concepts will
inspire future endeavors.
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