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ABSTRACT 
Virtual reality (VR) techniques can modify how physical body move-
ments are mapped to the virtual body. However, it is unclear how 
users learn such mappings and, therefore, how the learning process 
may impede interaction. To understand and quantify the learning 
of the techniques, we design new metrics explicitly for VR inter-
actions based on the motor learning literature. We evaluate the 
metrics in three object selection and manipulation tasks, employ-
ing linear-translational and nonlinear-rotational gains and finger-
to-arm mapping. The study shows that the metrics demonstrate 
known characteristics of motor learning similar to task completion 
time, typically with faster initial learning followed by more gradual 
improvements over time. More importantly, the metrics capture 
learning behaviors that task completion time does not. We discuss 
how the metrics can provide new insights into how users adapt to 
movement mappings and how they can help analyze and improve 
such techniques. 
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• Human-centered computing → HCI theory, concepts and 
models; Virtual reality; Empirical studies in HCI . 
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1 INTRODUCTION 
Virtual reality (VR) techniques can modify how physical body move-
ments are mapped to the virtual body. Such techniques can en-
able a user to reach further in VR than their physical arm could 
reach [26, 55, 63] or impose supernatural body structures like an 
additional limb or tail [75, 88]. Many of these movement mappings 
have been shown to increase user performance and ergonomics in 
object selection or manipulation tasks [27, 68, 80, 86]. 

When a VR interaction technique introduces such a movement 
mapping, the user must learn it. Currently, task completion time is a 
primary metric to evaluate user performance and learning [7, 35, 90]. 
However, the time metric is abstract and oversimplified—it provides 
little understanding of why a user achieves such performance and 
does not capture crucial nuances of learning (e.g., what is being 
improved over the learning process and how [44, 87]). Therefore, 
it fails to inform how a movement mapping technique could be 
designed and improved. 

The field of motor learning provides theories about how our 
bodies and central nervous systems learn movement mappings 
(e.g., adapting to slight changes such as mouse-to-cursor gains, or 
learning an entirely new control such as a reversing the cursor 
movement from that of the mouse) [16, 44, 52]. Therefore, motor 
learning may help to understand, design, and evaluate VR interac-
tion techniques that introduce new movement mappings. However, 
the metrics from motor learning literature do not directly translate 
to measuring and understanding motor learning of VR interaction 
techniques. 

One reason lies in the distinct objectives. The motor learning 
literature strives to introduce controlled perturbations that disrupt 
normal motions and induce errors systematically, allowing to de-
scribe the learning process [61, 62]. In contrast, VR interaction 
techniques aim to be fast to learn and effective to use, and only 
manipulate the mapping as much as is necessary to complete a task. 
Therefore, a good motor learning metric might not describe best 
the learning of a VR technique and point us to understand how the 
technique could be improved. 

Another reason lies in the tasks. The accuracy of the movement 
in tasks without feedback is a sensitive measure for showing mo-
tor learning between repetitive trials, and thus modeling learning 
over time. In contrast, it is sufficient for the users to complete VR 
selection and manipulation tasks (or HCI tasks in general) under a 
certain accuracy threshold (e.g., hitting a target button anywhere 
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within its boundaries) and while receiving visual feedback continu-
ously (e.g., of a cursor). Therefore, a good metric in motor learning 
may be less applicable for modeling learning of VR interaction 
techniques, in particular across varying tasks. 

To quantify and understand how users learn movement map-
pings in VR, we design new metrics explicitly for VR interaction 
techniques. We use motor learning literature and analyze the char-
acteristics of typical HCI tasks in VR to identify candidate metrics 
and establish criteria for a good metric in VR. We then evaluate the 
metrics in three common VR interaction tasks (object translation, 
rotation, and selection) employing one mapping type in each (a 
linear-translational gain [48], a non-linear-rotational gain [27], and 
a finger-to-arm mapping [80], respectively). 

We find that the metrics capture such learning processes that the 
commonly used metric in HCI—task completion time—does not. We 
also validate that the metrics demonstrate known characteristics 
of motor learning, typically with rapid initial learning followed 
by more gradual improvements over time. We discuss how these 
metrics offer new insights into learning movement mappings in 
addition to task completion time. We also provide an open-source 
toolkit for using them1 . The proposed metrics can be used to (1) 
analyze and compare movement mapping techniques across multi-
ple motor learning processes and (2) inspire and derive strategies 
to improve motor learning of VR techniques. 

2 RELATED WORK 
In this section, we first relate VR techniques to motor learning 
problems by discussing how the techniques map movements and 
how they are currently evaluated in VR research. We then explain 
how the techniques fit into the two major paradigms in motor 
learning. Finally, we review the existing metrics to quantify motor 
learning. 

2.1 Movement Mappings in VR 
VR enables “beyond-real interactions” [1] that are impossible in the 
physical world. For instance, a user can have a third arm [88], a sixth 
finger [36], and a human tail [75]. They can use arms to control 
their leg movements [88] or embody themselves as an animal or 
even a chair [12, 71]. Their arms and fingers can also be extended 
from their original size/length [55]. These techniques are based on 
movement mappings that introduce incongruencies between the 
sensory feedback from the virtual and the physical body. Therefore, 
the user must learn the mapping. 

Besides testing novel interaction concepts, many techniques 
have been shown to increase user performance in object selection 
or manipulation tasks [27, 68, 80], ergonomics [86], and to give 
haptic feedback by redirecting the user’s hand to touch a physical 
object at another location without them noticing [4]. Translational 
or rotational gains (e.g., Go-Go [63], PRISM [26], and many oth-
ers [18, 22, 27, 48, 86]) can help users reach faraway targets and 
enable faster or more accurate manipulations depending on the 
gain function. With a third arm [88] and multiple hands [68] users 
were able to increase target selection speed. Long fingers and arms 
also improved efficiency in selection tasks [55], a translational map-
ping of the hand enhanced target selection ergonomics [86], and 

1https://github.com/Davin-Yu/MotorLearningMetrics4HCI 

a technique that maps finger movements to virtual arms allowed 
arm-based interactions in a constrained physical space [80]. 

As these examples show, the interaction techniques are often 
evaluated by completion time or accuracy in repetitive object selec-
tion or manipulation tasks, or by noticeability when movements 
are redirected. However, these metrics provide little insight into 
how users learn to use a technique, and thus why they perform 
as they do. Therefore, they also fail to inform how the techniques 
could be designed and improved. 

2.2 Motor Learning 
Learning VR interaction techniques is primarily relevant to two 
stages of motor learning: action selection and action execution [44] 
(the first stage, goal selection, is about the choice of a target that 
will require a movement, and hence is typically not in the scope of 
movement mapping techniques). Action selection is about identify-
ing the movement that can achieve the goal, and action execution 
concerns performing quality movements to execute the selected 
action. 

User performance evaluation in HCI usually emphasizes action 
execution. For example, repetitive Fitts’ law tasks [74] is considered 
as motor acuity tasks in motor learning—an action, once selected, 
can be executed with greater speed and precision over practice [44]. 
When using a mouse cursor to point and select various target 
locations across the display, the component of action selection is 
negligible if a user is already used to the input controller (e.g., a 
mouse with a familiar gain). However, if the movement mapping 
is changing (e.g., a new gain function is introduced), the role of 
action selection suddenly increases in learning, as users need to 
determine how to move correctly, followed by the fine-tuning of 
the acuity. Despite these differences, action selection and action 
execution are mostly measured together as a whole, as it is hard to 
measure action selection directly. 

The two major paradigms of motor learning are called motor 
adaptation and de novo learning. Motor adaptation refers to adjust-
ing a well-practiced action to a novel perturbation [38, 44, 84]. For 
example, in common psychological tasks like visuomotor gain or 
rotation, participants need to learn to hit targets with a cursor that 
is sped up or rotated by an angle (e.g., 45◦) on the movement direc-
tion [45, 62, 84]. The movement mappings in VR techniques corre-
sponding to motor adaptation paradigm are, for instance, scaling 
the length of an arm [55, 76], or applying translational [48, 63, 86] 
or rotational movement gains (often called redirection) [4, 18, 27]. 
In these examples, the mapping is modified from a 1:1 mapping (i.e., 
the physical world) instead of completely changed. 

De novo learning describes the procedure of establishing a new 
motor controller from scratch [44]. In contrast to motor adaptation, 
which only demands adjusting a previously mastered skill, de novo 
learning requires people to formulate appropriate actions based on 
novel information/feedback. In VR, manipulating a sixth finger [36, 
82], a third arm [88], many hands with one [68], arm movements 
with a finger [80], and operating an animal body with human body 
motions [71, 75] are closer to de novo learning as the visuomotor 
associations are somewhat arbitrary/unfamiliar. 

A third paradigm from motor learning, Sequential learning, stands 
for combining a set of actions in a temporally organized manner to 

https://github.com/Davin-Yu/MotorLearningMetrics4HCI


Metrics of Motor Learning for Analyzing Movement Mapping in Virtual Reality CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

achieve a task [19, 41]. Examples of this category in VR are selecting 
an occluded target with multiple discrete steps of dis-occlusions 
and refinements [94] or swinging a light saber to cut flying cubes 
in Beat Saber with a continuous movement. Although sequential 
learning matches such HCI tasks in VR, in this study we focus on 
the more elementary components of motor learning to understand 
VR movement mapping. 

The two major motor learning paradigms—motor adaptation 
and de novo learning—provide elementary tasks that are similar 
to many of the movement mappings in existing VR techniques, as 
reviewed above. Therefore, we depart from the metrics in motor 
learning within these paradigms. 

2.3 Metrics of Motor Learning 
A diverse range of metrics have been applied, especially in be-
havioral neuroscience and physiology, to quantify motor learn-
ing [2, 44, 54, 70, 72]. We roughly classify them into three main 
categories. 

Time-based metrics like movement time and task completion 
time are straightforward approximations of learning [35, 72]. Intu-
itively, people become faster at tasks with practice until reaching 
the performance limit, which can be approximated by a power 
function [51, 59]. 

Error-based metrics are also prevalent in the related literature. 
Endpoint error describes the distance between the target position 
and a user’s actual point of completion [8, 92]. It is often employed 
in motor adaptation tasks where no visual cursor is available dur-
ing the movement until completion (i.e., no movement correction 
possible)—this is to estimate the “user prediction error” in every 
learning trial [61, 62]. In visuomotor rotation tasks, Onset error, the 
predicted movement direction without correction, can be a replace-
ment when there is ongoing visual feedback [60, 67, 78, 84]. More-
over, other types of errors based on movement trajectory, including 
deviation errors from the desired movement vector [53, 67, 70, 77] 
and maximum displacement [8] have been applied in the studies. 

Another set of metrics concerns velocity, acceleration, and jerk 
profiles throughout the movement. For example, peak velocity in-
dicates the initial movement impulse and may correlate with how 
well a user learns a movement [54, 70, 89]. The overall “smoothness” 
of the movement can also be assessed via, for example, numbers of 
velocity peaks [14] and normalized jerk [10, 34, 70]. These measures 
evaluate the “goodness” of the whole movement, assuming that an 
ideal movement is stable (e.g., no sudden acceleration changes). 

While metrics of motor learning have been developed in other 
research fields, many of them cannot be directly applied to HCI 
tasks, which have unique features such as bounded errors and 
constant visual feedback (detailed in Section 3.1). Therefore, we 
propose new metrics inspired by the literature and adjust some 
existing ones to make them more applicable in the context of HCI. 

3 MEASUREMENT CANDIDATES 
To develop metrics of motor learning explicit for VR interaction, 
we first looked into the typical task assumptions in HCI tasks. We 
then summarized a list of criteria for a good metric, which guides 
the formulation of five candidate metrics. 

3.1 Task Assumptions 
While measurements of motor learning have been proposed and 
applied in the field of motor learning, we identify three key features 
of a typical HCI task that may make the existing metrics not directly 
applicable to such a task. 

3.1.1 Bounded errors. Unlike many behavioral neuroscience and 
physiology tasks where the goal is to “be faster and more accurate” 
over time, HCI tasks typically require users to complete the task 
under an accuracy threshold throughout the interaction process. 
For example, users may be required to select a spherical object or a 
key on a keyboard with a predetermined width [3, 7]. They may 
also need to move or rotate an object to a specific configuration 
with a tolerant threshold [56, 93]. Such a kind of binary output (i.e., 
within the threshold = success and outside of the threshold = fail) may 
influence movement behaviors significantly because the “reward” 
is different, thus affecting the methods for assessing them. For 
example, users may intentionally decrease their movement speed 
in favor of a more accurate action, or be only accurate enough (i.e., 
barely within the target area) to increase speed, depending on the 
cost of failure [6]. 

3.1.2 Constant visual feedback. When performing an HCI task 
with movement mapping techniques, users often receive continuous 
visual feedback from the environment to help them adjust their 
movement concurrently to complete the task. For example, they 
can see the movement of the virtual hand/controller, limbs, and 
the manipulated object during interaction (e.g., [1, 22, 27, 80]) to 
determine their next best move/correction. Such a task setting poses 
challenges in estimating the user’s initial prediction error—it makes 
the motor learning metrics such as endpoint error unusable as they 
were designed for tasks where no visual cursor was available as 
feedback of the movement. 

3.1.3 Variability across trials. In contrast to many motor adapta-
tion tasks that train participants on a perturbation with limited 
target variations (e.g., single distances) [5, 45, 84], an HCI appli-
cation may require users to complete tasks with different target 
configurations while learning a new movement mapping. For ex-
ample, in the experiments evaluating object selection techniques in 
VR, the participants are often required to hit targets with different 
depths in consecutive trials with new mappings [32, 55, 68, 80]. 
Ideally, a metric should still be able to capture the learning progress 
even with changing task difficulties (e.g., distances and depths). 

3.2 Criteria for a good metric 
Following the three task assumptions, we determine five criteria for 
assessing the goodness of a metric for motor learning of movement 
mappings in VR. 

• Validity: the metric complies with known characteristics of 
motor learning in a learning environment. The motor learning 
process typically starts with rapid improvements followed by 
diminished returns until reaching a performance plateau, which 
also suggests that “errors” during motor learning should decay 
over trials [32, 44, 73, 87]. We can approximate this process with 
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a power function2: 

𝑦 = 𝑎 · 𝑥 −𝑘 + 𝑏 (1) 

where 𝑦 is the data based on the evaluation metric; 𝑥 is the 
amount of practice (e.g., trials); 𝑘 is the learning rate (𝑘 > 0); 
𝑎 is a scaling factor (as the power term 𝑥 −𝑘 is between 0 and 
1); and 𝑏 is the asymptotic, representing the performance limit 
(𝑏 > 0). A metric is invalid if it does not follow known learning 
characteristics (e.g., error increases over practice) or shows no 
learning process in a simple learning environment designed for 
motor learning. 

• Informativeness: the metric provides detailed insights into how 
users learn/adapt to a movement mapping. For example, it would 
be ideal to understand the adaptation strategy in the learning 
process; the users may become quicker at task completion due 
to a more accurate first move, or due to a coarse first move but 
with fast correction movements. Understanding the strategies 
could help refine existing designs to offer dedicated support, 
such as giving augmented feedback for either effective ballistic 
movements (prediction) or the later correction movements [47]. 

• Generalizability: the metric remains applicable and informa-
tive within various task scenarios and new movement mappings. 
The evaluation can be accomplished by assessing metrics within 
more intricate task scenarios and movement mappings. A metric 
is less generalizable if it becomes invalid in scenarios with more 
complicated tasks and movement mappings. Additionally, an 
ideal metric should be sample size independent, meaning the 
metric should remain helpful regardless of the sample size (e.g., 
works for individual users). 

• Resiliency: the metric is robust across different task difficulties. 
For example, task completion time may have poor resiliency 
as it is easily influenced by target widths and distances, as pre-
dicted by Fitts’s law [24, 74]. Such a metric may still be helpful 
in a controlled experiment where difficulty levels are crossed, 
and participant performance is averaged. However, it might be 
more challenging to deploy it in scenarios where the difficul-
ties during the learning process can differ dramatically (e.g., a 
user employs the Go-Go technique to retrieve objects situated at 
varying depths) to assess the learning progress in real-time. 

• Autonomy: The metric assesses trial-by-trial learning indepen-
dently, without the need for additional baseline information. 
For example, the metric is not supposed to estimate the future 
parts of the learning process (e.g., the mean peak velocity after 
enough practice [45]). It should also not rely on, for instance, 
the predicted task completion time, as this information is only 
sometimes available. 

3.3 Candidates 
We propose the following five candidate metrics to quantify the 
learning process of movement mappings. Task completion time is 
considered the baseline. Refinement time proportion and refinement 
space quantify the user prediction error. Normalized path error and 

2In the supplementary material, we also use an exponential function [33] and a dual-
exponential function (representing a combined slower and faster learning process) [32, 
73] to provide alternative views on how the learning process can be approximated. 

Figure 1: The refinement space and refinement time are de-
termined by the correction movements observed in the entire 
movement. 

normalized jerk error measure the closeness of the current move-
ment to an ideal movement. The new metrics aim to provide addi-
tional insights into how users are learning (informativeness) and 
can quantify trial-by-trial learning (autonomy). In the following, 
we provide the rationale for building the metrics while we refer 
readers to Appendix A and our open-source toolkit for the technical 
aspects of metrics implementations. 

3.3.1 Task completion time. Task completion time (Time) refers 
to the time taken to complete a specific task. The changes in task 
completion time over sessions/trials have been used as a key usabil-
ity measure to quantify an interface’s learnability in HCI [35, 40]. 
The metric provides limited understanding apart from the user get-
ting quicker at the task over time. However, task completion time 
is known to be robust under different learning scenarios (i.e., the 
power law [51, 59])—we, therefore, consider it as a baseline. 

3.3.2 Refinement time proportion. Refinement time proportion 
(RTP) is the proportion of correcting/refining movements from 
the total movement time. We aim to use this metric to quantify the 
correctness of a user’s initial movement prediction. 

In motor learning literature, one attractive error-based metric is 
endpoint error [61, 62], which assesses the “user prediction error” 
with no possible corrections (e.g., without any feedback during the 
movement). However, correction movements are inevitable in HCI 
tasks which typically provide constant visual feedback (e.g., in the 
form of a cursor or an avatar hand). Similar metrics that worked 
under persistent visual feedback—the onset error [60, 67, 78, 84]—is 
only usable for visuomotor rotation tasks to estimate the errors in 
the initial movement direction. 

We thus formulated RTP because of the unique features in HCI 
tasks. Selection and manipulation movements are often composed 
of two phases: the ballistic phase which is the initial movement 
impulse to get closer to the target, and the refinement phase which 
consists of one or more slower adjustments for fine-grained selec-
tion or manipulation [25, 46, 49]. With RTP, we assume that the 
ballistic phase represents the initial user prediction without correc-
tion movements, and this prediction should become more accurate 
with learning and practice [65]. This view essentially corresponds 
to the Bayesian perspective of learning—a user’s internal estimation 
can get more accurate over practice, given the inspected prediction 
errors in each trial [42, 45]. 
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Suppose the ballistic phase ends in time 𝑡𝑏 and the total comple-
tion time is 𝑡𝑒𝑛𝑑 (see Figure 1), RTP is calculated as: 

RTP = (𝑡𝑒𝑛𝑑 − 𝑡𝑏 )/𝑡𝑒𝑛𝑑 (2) 

RTP takes the refinement proportion rather than the ballistic 
proportion because it is an error-based metric. 

3.3.3 Refinement space. Refinement space (RS) is the Euclidean dis-
tance between where a user starts the refinement phase and where 
the user finishes the whole movement (see Figure 1). The concept 
is similar to RTP but considers the ballistic and refinement phases 
from a spatial perspective; RS captures a user’s spatial prediction 
error in the ballistic movement (i.e., without correction). 

RS aims to address a limitation of RTP : RTP might depend on the 
target size. Intuitively, users often have little incentive to fine-tune 
their movement if their action has already resulted in a correct exe-
cution, for instance when the pointer is within a large target [92]. 
In contrast, smaller targets may require more refinement to ensure 
accuracy, leading to a higher refinement proportion. To overcome 
this, RS assumes that users should be more precise at calibrating 
their ballistic action to reach as close as possible to the point they 
are targeting in space. Unlike RTP, RS gives an absolute distance 
error to eliminate the influence of the “proportion” of the correction 
movement. Additionally, the metric is intended to remain consis-
tent irrespective of target sizes, as it assesses the proximity to the 
movement’s endpoint rather than the target’s center. 

3.3.4 Normalized path error. Normalized path error (NPE) repre-
sents the percentage of the “extra movement”, as compared to the 
ideal shortest path, in the whole movement (see Figure 2 left). It 
is based on the concept of quantifying the errors in the whole 
movement trajectory [8, 67], defined by the following equation: 

NPE = (𝐿𝑎 − 𝐿𝑖 )/𝐿𝑎 (3) 

where 𝐿𝑎 is the actual movement distance, and 𝐿𝑖 is the ideal short-
est movement distance. Because HCI tasks typically have bounded 
errors, the shortest distance should be considered as if the user is 
aiming at the closest edge of the target boundary (not the target 
center), as users might not leverage the whole available width of 
the target [92]. Otherwise, the NPE might become negative. This 
metric quantifies if the user optimizes their movement over practice 
to align with the most optimal path. Essentially, this metric poses 
a simple optimal control assumption, where the goal is to mini-
mize the distance to travel from the start to the target by avoiding 
unnecessary variances [32]. 

3.3.5 Normalized jerk error. Normalized jerk error (NJE) measures 
the “extra jerk” applied in the current movement, compared to the 
ideal movement governed by the minimum jerk assumption [23, 28]. 

Jerk is the change in acceleration, the third time derivative of po-
sition, which should ideally be minimized to ensure the smoothness 
of a movement. The following equation from Teulings et al. [10, 79] 
calculates normalized jerk of a movement trajectory, which is com-
parable across movement distances and durations: 

NJ = 

√︄ 
1 
2 
· 
∫ 𝑡𝑒𝑛𝑑 

𝑡𝑠 𝑡 𝑎𝑟 𝑡 

𝑗 2 (𝑡 )𝑑𝑡 · 𝐷
5 

𝐿2 (4) 

where 𝑡𝑠𝑡 𝑎𝑟 𝑡 is the movement starting time, 𝑡𝑒𝑛𝑑 is the movement 
ending time, 𝑗 2 (𝑡 ) is the squared jerk, 𝐷 is the movement duration, 

Figure 2: Normalized path error quantifies the “extra move-
ment distance” compared to the ideal shortest path (left). A 
jerk-minimized movement, described by a 4𝑡ℎ order polyno-
mial, covers the same distance within the same time as the 
actual movement (right). 

and 𝐿 is the movement length/distance. We used normalized jerk 
instead of the original jerk because it cancels out the effect of 
movement distances and durations, so it is ideally resilient across 
difficulty levels [79]. However, the absolute value of normalized jerk 
is hard to interpret (e.g., NJ < 50 in one study [79] while NJ > 2×104 

in another [81]). This motivated us to build a percentage-based 
metric that needs the ideal normalized jerk as a reference. 

We assume an ideal movement covers the same distance within 
the same period of time as the actual movement; however, it con-
tains only one velocity peak, and the jerk during the movement is 
minimized. In this case, we avoid inferring about ideal movement 
time for a given distance (autonomy) but focus exclusively on 
the smoothness of the movement. Furthermore, our assumption 
posits that the optimal motion comprises solely a ballistic motion, 
so it imposes penalties for any jerk introduced during corrective 
movements. 

We can describe an ideal, jerk-minimized movement using a 
symmetric, bell-shaped movement speed profile, described by a 4𝑡ℎ 

order polynomial [28] (see Figure 2 right): 

𝑣𝑖 (𝑡 ) = ℎ · (𝑡 − 𝑡𝑠𝑡 𝑎𝑟 𝑡 )2 · (𝑡 − 𝑡𝑒𝑛𝑑 )2 (5) 

here, 𝑣𝑖 (𝑡 ) is the speed of the ideal movement at timestamp 𝑡 , and ℎ 
is a free parameter to be fit. The parameter ℎ can be calculated if we 
fit in the actual movement distance (𝐿𝑎 ) and time period (from 𝑡𝑠𝑡 𝑎𝑟 𝑡 
and 𝑡𝑒𝑛𝑑 ), as according to our assumption, an integral of 𝑣𝑖 (𝑡 ) equals 
to 𝐿𝑎 . With 𝑡𝑠𝑡 𝑎𝑟 𝑡 , 𝑡𝑒𝑛𝑑 , and calculated ℎ, we can then generate the 
speed profile (thus the jerk profile) for the ideal movement, and 
calculate the ideal normalized jerk NJ𝑖 with Equation 4. With the 
actual speed profile, we can also find the actual normalized jerk NJ𝑎 . 
Finally, NJE is calculated as: 

NJE = (NJ𝑎 − NJ𝑖 )/NJ𝑎 (6) 

NJE assesses how closely the smoothness of the current move-
ment matches the ideal condition of jerk minimization. 

4 EVALUATION OF THE METRICS 
We designed a user study to evaluate the validity, generaliz-
ability, and resiliency of the proposed metrics in VR interaction 
tasks. In this section, we describe the task scenarios and the study 
protocol for evaluating the metrics. 
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4.1 Task Scenarios 
This section presents a high-level overview of the task scenarios 
(more details in Appendix B.1). The scenarios are illustrated in 
Figure 3. They are: 

• An object translation task with a linear-translational gain 
movement mapping (LT Task). 

• An object rotation task with a non-linear-rotational gain 
movement mapping (NLR Task). 

• An object selection task with a multi-joint finger-to-arm 
movement mapping (FA Task). 

4.1.1 LT Task: Linear Translational Gain. The task requires the 
participants to move a 3D cube from a starting position to a target 
position on the table (see Figure 3 left). The target can appear in 
different depths and directions. 

The participants complete the tasks in two mappings: one in-
volves a virtual hand using a 1:1 physical to virtual mapping, while 
the other utilizes a virtual hand with a linear translational gain in 
the depth dimension (the forward z-axis) [48]. The new mapping 
requires motor adaptation. 

We anticipate the LT task to be the easy to learn. Thus, we 
employ this task to evaluate the validity of the metrics, as the 
learning trend is expected to be evident in this straightforward 
learning environment. 

4.1.2 NLR Task: Non-linear Rotational Gain. The task requires the 
participants to rotate a 3D bunny to a target orientation (see Figure 3 
middle). The position of the bunny is fixed to eliminate the need 
for object translation, which is covered in the LT task. The required 
rotation angles and directions can be varied. 

The task contains two mappings: a 1:1 mapping and a non-linear 
rotational gain mapping. We replicate a previous technique [27], 
where the virtual hand rotation can be amplified or attenuated based 
on the movement speed of the physical hand during manipulation. 
The new mapping necessitates motor adaptation. 

We use this task to assess the generalizability of the metrics by 
representing a scenario where the task is difficult (requires mental 
rotation). This task will reveal whether the metrics are sensitive 
enough to capture non-instant learning. 

4.1.3 FA Task: Finger-to-Arm Mapping. The task requires users to 
select a target from a starting position (see Figure 3 right). The 
target can appear at different depths, distances, and heights. 

We apply two mappings: a 1:1 finger-to-finger mapping and a 
multi-joint finger-to-arm technique called FingerMapper [80]. Fin-
gerMapper determines the movement of the virtual arm by remap-
ping index finger extension or retraction. 

FingerMapper requires de novo learning, as a new motor con-
troller of the virtual arm needs to be established. We use this task to 
assess the generalizability of the metrics to represent a scenario 
where the mapping is complex. 

4.2 Study Protocol 
4.2.1 Participants. We recruited 16 participants (6 women, 10 men) 
with a mean age of 27.3 (SD = 5.1). Their self-rated familiarity score 
with VR was 4.5 on average on a 7-point Likert scale. They all 
reported having normal or corrected-to-normal vision. 

4.2.2 Devices. A standalone Oculus Quest 2 headset was used to 
immerse the participants in VR. The application was developed with 
Unity C#, using Oculus hand tracking and interaction modules. 

4.2.3 Design. The study employed three interaction tasks requir-
ing different movement mappings. Each task contained four learn-
ing phases that were presented in the same order to evaluate the 
metrics in different learning conditions. 

(1) Training: 1:1 mapping was employed for the participant to 
get used to the interaction task. 

(2) Adaptation 3: the new movement mapping corresponding to 
each task was used for the first time. 

(3) De-adaptation: the mapping returned to 1:1. This phase al-
lowed us to identify if there was a need to de-adapt when 
returning to the standard mapping from the movement map-
pings (i.e., the aftereffects). 

(4) Re-adaptation: the movement mapping technique was ap-
plied again. We aimed to use this phase to measure the “sav-
ings” of the adaptation phase and see whether it would make 
users to adapt to the mappings faster than when using them 
for the first time. 

Within each phase, there were thirty learning trials varying 
across three difficulty levels and five variance levels. The difficulty 
levels constructed apparent task difficulties with different move-
ment distances, and the variance levels produced deviations in 
movement directions. The trial order was semi-randomized in the 
way that all difficulty levels would appear in consecutive chunks 
(i.e., Trial 1-3, Trial 4-6, Trial 7-9, etc.), and the variance levels were 
randomly assigned to each trial at the same frequency. Such a design 
imposed fluctuations to tasks so that the participants could learn the 
new movement mappings rather than a particular movement itself 
with a fixed target configuration. The difficulty and variance levels 
were piloted with four participants who did not attend the formal 
study to ensure the tasks were not too easy nor too challenging. 
The detailed parameters are documented in Appendix B.2. 

In sum, the study consisted of 360 trials (3 tasks × 4 phases 
× 3 difficulty levels × 5 variance levels × 2 repetitions) for each 
participant. 

4.2.4 Procedure. The experiment lasted approximately 50 minutes. 
The participants were first invited to fill in a demographic ques-
tionnaire and a consent form and were informed that they would 
learn three new ways of interaction in VR. We then provided them 
with general instructions on conducting the experiment, such as 
completing the task as fast as possible and correctly performing a 
pinch gesture. 

After that, they watched a video on how an expert finished LT 
Task with/without movement mapping. With this, we aimed to 
teach the participants the main concept of the movement mapping 
technique. They could ask questions about the technique and the 
task, if any. After the video and the clarification, the participant 
put on the VR headset, and re-centered and calibrated the table 
height to ensure comfortable positioning. The virtual table was also 
calibrated based on a physical table to support users during the 
tasks, which could decrease the interaction fatigue as compared to 

3Note the “adaptation” phase here is different from “motor adaptation”, which is a 
learning paradigm. Same for the phase names below. 
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Figure 3: Task scenarios: object translation with linear-translational gain (left), object rotation with non-linear-rotational gain 
(middle), and object selection with multi-joint finger-to-arm mapping (right). The blue outline indicates the physical hand 
position (not displayed during the task). 

mid-air input [13, 83]. After the calibration, the first task started. 
The switch between the techniques (i.e., from the 1:1 mapping 
to a new mapping, or vice versa) was indicated by a short "ding" 
sound to mentally prepare participants for the adaptation. After 
completing the first task, the participants were required to take off 
the headset and to take a break. The participants were also allowed 
to take a break before any trial as long as they felt fatigued. 

We then repeated video, clarification, and task-performing pro-
cedure for NLR Task and FA Task in a fixed order. The participants 
were compensated with drinks and snacks equivalent to 20€ after 
finishing the experiment. 

4.3 Analysis Overview 
The collected movement trajectory data were processed and fit into 
the power function (Equation 1) for evaluating validity and gen-
eralizability. We used both 𝑅 2 and 𝑅𝑀𝑆𝐸 to assess the goodness-
of-fit. We also applied linear mixed models to evaluate resiliency. 
Detailed data processing strategies can be found in Appendix C. 

4.3.1 Result Interpretation. 𝑅 2 is scale-independent and can be 
compared across different metrics and phases. Generally, larger 
𝑅 2 values indicate that the learning effect described by the power 
function in Equation 1 is better captured with the metric under 
evaluation. We refer to a rule of thumb ‘large’ effect threshold in 
behavioral science 𝑅 2 > 0.25 to determine whether the learning 
seems apparent [15]. When 𝑅 2 is between 0.09 and 0.25, denoted 
as ‘medium’ to ‘large’ effect threshold [15], we interpret the metric 
data as weakly indicating learning behavior. Within this range, we 
recognize that non-learning-related noises contribute significantly 
to data variances, which could imply that the learning component 
is relatively small. Finally, we interpret 𝑅 2 values smaller than 0.09 
as the metric being unable to demonstrate motor learning. 𝑅𝑀𝑆𝐸 is 
scale-dependent, which provides supplementary information when 
comparing results within each metric and for phases with the same 
movement mapping (i.e., training vs. de-adaptation or adaptation vs. 
re-adaptation). Linear mixed models are used to determine whether 
task difficulties exhibit significant effects on metrics data (𝛼 = 0.05). 
In the following, we describe the main results based on validity, 

generalizability, and resiliency (Section 4.4-4.6). We will focus 
on informativeness in Discussion (Section 5). 

4.4 Validity 
A metric is invalid if error increases over practice (coefficient 𝑎 in 
Equation 1 is smaller than 0) or shows no learning process in a 
simple learning environment (e.g., 𝑅 2 < 0.09 as in mentioned in 
Section 4.3.1). Overall, all the metrics exhibited a robust adherence 
to the known attribute of motor learning described by the power 
function—the process starts with rapid initial learning followed by 
more gradual improvements over time (see Figure 4). 

Performance over Time is often treated as the standard metric 
for learning in HCI. While the metric had strong fitting results for 
phases with a 1:1 mapping (𝑅 2 = 0.89 and 0.87), it produced mod-
erate results for phases with new movement mappings (𝑅 2 = 0.52 
and 0.31). This indicated that the data variances in the adaptation 
and re-adaptation phases were high, covering up some parts of the 
learning process the metric was supposed to demonstrate. 

RTP and NJE led to very similar performance pattern as Time: 
they both showed good fitting results for phases with a 1:1 mapping 
(𝑅 2 between 0.72 and 0.91); however, the fitting performance dimin-
ished notably during phases involving novel movement mappings 
(𝑅 2 between 0.41 and 0.53). The data variances in Time, RTP, and 
NJE could be due to the effective size of the target being smaller 
in the new movement mapping than the 1:1 mapping (given the 
same visual size but different movement gains). More difficult task 
conditions resulted in more noises in the metric data, indicating 
that the metrics could be susceptible to changing difficulties. 

RS demonstrated the most robust performance across the four 
phases of learning with all 𝑅 2 > 0.80. The result indicated that the 
participants were indeed getting more accurate in matching their 
ballistic movement to their targeted position, and the noises that 
could impact the learning illustrated in this metric are relatively 
minor. 

NPE achieved good fitting performance in training, adaptation, 
and re-adaptation phases (𝑅 2 = 0.81, 0.91, and 0.75). The 𝑅 2 = 0.14 
for de-adaptation was unexpectedly low. The error was indeed 
going down over practice but missed the rapid improvement part. 
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Figure 4: Fitting results of the power function in LT Task (linear translation). Data points are averaged across participants. 

The 𝑅𝑀𝑆𝐸 was as low as the one in the training phase (both 𝑅𝑀𝑆𝐸 = 
0.02). One possible explanation was the “saving” effect [20, 43]: 
participants had learned to move closely to the shortest path during 
training and did not need to completely re-learn it in de-adaptation. 
Because the learning was small and difficult to capture, the noises 
played a significant role in the data, leading to inferior 𝑅 2 (see 
Appendix D where we concatenated training and de-adaptation 
data). 

In summary, all metrics were shown to be valid in LT Task (i.e., a 
simple learning environment). The learning process demonstrated 
by RS seemed most apparent. Time, RTP, and NJE also adhered to the 
power function closely in phases with 1:1 mapping and illustrated 
sufficiently clear learning trends when the new movement mapping 
was applied. NPE was helpful for both mappings and indicated 
potential savings in the de-adaptation phase. 

4.5 Generalizability 
We validated the metrics in a simple learning environment (LT Task). 
We then extended our analysis to scenarios with more complicated 
tasks and movement mappings, where the learning could be smaller 
and more challenging to capture. As expected, the overall fitting 
performance to the power function exhibited a significant decrease 
for all the metrics in NLR Task (non-linear rotation) and FA Task 

(finger-to-arm mapping), as shown in Figures 7 and 8 in Appendix D. 
We also evaluated the fitting results at the individual level in the 
adaptation phase of LT Task, as the data were supposed to be noisier 
than the averaged data. Figure 5 showcases two randomly selected 
individuals as samples. 

4.5.1 NLR Task. Time was able to capture learning in training 
and adaptation (𝑅 2 = 0.44 and 0.54), but not de-adaptation and 
re-adaptation (both 𝑅 2 < 0.02). RTP weakly disclosed the learning 
trend during training, adaptation, and de-adaptation (𝑅 2 = 0.20, 
0.15, and 0.12). Remarkably, RS was still able to illustrate rather 
clear learning processes in adaptation and re-adaptation (𝑅 2 = 0.40 
and 0.39), and revealed weak learning trend in training and de-
adaptation (𝑅 2 = 0.14 and 0.13). NPE provided weak fitting results 
in training, adaptation, and re-adaptation (𝑅 2 = 0.16, 0.28, and 
0.13), while became invalid in de-adaption (power function 𝑎 < 0). 
NJE failed to produce meaningful learning information, perhaps 
because the noises were relatively too large across the four phases 
(all 𝑅 2 ≤ 0.09). 

4.5.2 FA Task. The fitting outcomes across the metrics were overall 
better for FA Task than NLR Task. The learning processes uncovered 
by RS, NPE, and NJE seemed to be relatively apparent in general. 
In particular, RS illustrated the learning especially well in training 
and de-adaptation (𝑅 2 = 0.65 and 0.39). The data in adaptation and 
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re-adaptation resulted in a weaker fit (𝑅 2 = 0.22 and 0.17). NPE ap-
peared to be more consistent over the four phases (𝑅 2 ∈ [0.25, 0.50]), 
so did NJE (𝑅 2 ∈ [0.20, 0.47]). Time achieved better performance in 
training, adaptation, and de-adaptation (𝑅 2 ∈ [0.28, 0.49]), similarly 
for RTP (𝑅 2 ∈ [0.21, 0.25]). However, Time and RTP only captured 
the learning process in re-adaptation to a limited extent (𝑅 2 = 0.1 
and 0.13). 

4.5.3 Learning in individuals. The mean values of 𝑅 2 and their 
corresponding standard errors at the individual level were 0.14 
(s.e.=0.03) for Time, 0.08 (0.02) for RTP, 0.53 (0.06) for RS, 0.38 (0.04) 
for NPE, and 0.10 (0.02) for NJE. The results from two randomly 
selected individuals aligned with the summary statistics (Figure 5). 
RS and NPE demonstrated evident learning trends in both partici-
pants (𝑅 2 ∈ [0.24, 0.59]). Time and NJE also captured learning for 
P9 (𝑅 2 = 0.27 and 0.21) but not for P15 (𝑅 2 = 0.02 and 0.01). The data 
in RTP were quite noisy for both participants to conclude learning 
(both 𝑅 2 < 0.07). 

4.5.4 Summary. In contrast to a simple learning environment like 
LT Task, learning could be smaller and more difficult to capture in 
complex scenarios with a challenging task (NLR Task) and move-
ment mapping (FA Task). Our results indicated that all metrics 
were, to some extent, obscured by noises that were not a part of 
the learning process described by the power function (i.e., lower 
𝑅 2 fitting compared to the ones in LT Task). 

We found RS was the most robust indicator of learning across 
all conditions, and its fitting results were often less influenced by 
data noises (i.e., high 𝑅 2). NPE also worked in most conditions, with 
one failure case (NLR Task, de-adaptation). The learning process 
demonstrated by Time, RTP, and NJE could be corrupted by large 
noises, and sometimes the learning trend was completely obscured. 
We recommend recruiting more participants to try to stabilize the 
noises in the data or administer fewer difficulty levels (see Sec-
tion 4.6 below). More learning trials may also help uncover a more 
distinct learning pattern within a challenging learning environ-
ment. Additionally, our results indicated that RS and NPE could be 
promising for analyzing movement learning in individuals. 

4.6 Resiliency 
In LT Task, the linear mixed models showed that there was a sig-
nificant effect of difficulty levels on Time (𝑝 < .001, 95% confi-
dence interval of the estimated coefficient, i.e., CI: [3.10, 3.38]), RTP 
(𝑝 < .001, CI: [2.38, 2.72]), RS (𝑝 < .001, CI: [2.29, 2.65]), and NJE 
(𝑝 < .001, CI: [3.28, 3.52]). The impact of difficulty levels on NPE was 
not statistically significant, with a close-to-zero coefficient (𝑝 = .11, 
CI: [-0.10, 0.28]). In NLR Task, difficulty level was a significant deter-
minant for all metrics (all 𝑝 < .001) except NPE (𝑝 = .40, CI: [-0.21, 
0.08]). In FA Task, the effect of difficulty level was significant on all 
metrics (all 𝑝 < .001). We refer interested readers to more detailed 
statistical test results in the supplementary materials. Figure 9 in 
Appendix D also visually illustrates how metrics were influenced 
by difficulty levels. 

Overall, our results indicated that NPE (the percentage of ‘extra 
movement’ compared to the ideal shortest path) remained rela-
tively resilient in the LT Task and NLR Task, but not in the FA 
Task. Contrary to our hypothesis, RS and NJE did not demonstrate 

empirical resilience. Additionally, Time and RTP were found to 
change due to variations in difficulty levels. These findings suggest 
that the current metrics may not be suitable for scenarios where 
the difficulties during the learning process can vary dramatically. 
While they were shown to be helpful in a controlled experiment 
where difficulty levels were systematically varied and participant 
performance was averaged (in our study), one should anticipate 
variances in the averaged data resulting from different difficulty 
levels. 

5 DISCUSSION 
In the previous sections, we demonstrated that all the proposed met-
rics are valid for motor learning in a simple environment (validity). 
Several metrics, particularly RS and NPE, illustrated their generaliz-
ability to more complex task scenarios and movement mappings 
(generalizability). Additionally, we found all metrics, with some 
exceptions in NPE, were likely to be influenced by task difficulties 
and are thus more suitable in a controlled experiment (resiliency). 

In this section, we focus on informativeness by discussing new 
insights brought by these motor learning metrics in addition to 
task completion time and how they can help us analyze and design 
interaction techniques in VR and HCI. 

5.1 Identifying Movement Learning with 
Metrics 

The metrics demonstrated promise in revealing learning behaviors 
in user movement which task completion time—a common metric 
to quantify learning in HCI—could not capture. They provide two 
immediate benefits. 

5.1.1 Identify learning behavior. In individual results (in Figure 5) 
and NLR Task results (in Figure 7), we found Time was not able to 
identify the learning process in the adaptation and re-adaptation 
phases. However, it was clear from RS and NPE that users were 
still learning the techniques to perform a more accurate initial 
movement within the first few repetitions and to follow a more 
optimal movement path over the whole practice session. As another 
example, in the de-adaptation phase of the NLR Task, while data 
on Time seemed converged, RTP and RS revealed that there was 
still a weak learning process going on over trials. 

Because of such adaptive/learning behaviors, there must be asso-
ciated mental or motor costs (e.g., cognitive load, memory resources, 
attention, physical fatigue) that were not encapsulated by task com-
pletion time but should not be ignored when designing or deploying 
new interaction techniques [16, 52, 91]. The new metrics can func-
tion as an evaluative tool to ascertain the presence of learning 
behavior. 

5.1.2 Determine source of motor learning. The results suggested 
that multiple motor learning processes were happening simultane-
ously, as the learning rate could vary significantly with different 
metrics. For example, referring back to Figure 4, where RS showed 
abrupt shifts in the first few repetitions, the improvement on RTP, 
NPE, and NJE seemed more gradual in general. Motor learning 
literature provides potential explanations for these results: action 
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Figure 5: Fitting results of the power function in LT Task regarding two individuals (P9 and P15) in adaptation. 

selection and action execution are both essential but distinct compo-
nents in the motor learning pathway [44]. While RS can be more rel-
evant to action selection (i.e., determining how to move to achieve 
a selected goal), RTP, NPE, and NJE could quantify better the quality 
of action execution (i.e., motor acuity). In contrast, Time could be 
a metric encompassing all possible learning stages—it provides a 
simple outcome, but without offering enough granularity to analyze 
learning in-depth. 

Additional insights can be obtained by referring to individual 
results in Figure 5—P9 and P15 might have different learning speeds 
for the same learning component. P9 rapidly acquired the ability to 
align with the optimal path and achieved convergence, whereas P15 
gradually developed this capability throughout the entire learning 
phase. P9 appeared to be fine-tuning the movement smoothness 
while P15 did not (i.e., NJE did not demonstrate learning in P15). 
These individual differences may necessitate different methods to 
facilitate learning a new movement mapping. Overall, the new 
metrics help determine the source of motor learning more precisely, 
thus guiding us to improve the techniques—we will discuss specific 
improvement strategies in Section 5.3. 

5.2 Patterns in Learning Movement Mappings 
From the metrics results, we infer how users learned the movement 
mappings over different learning blocks. 

5.2.1 Adaptation. When introducing a new movement mapping in 
VR, there is a need for motor learning in addition to cognitive learn-
ing (e.g., facilitated by the video introduction and oral explanation 
in our study). Users need to get accustomed to the new mapping 
by forming a more accurate initial movement impulse (i.e., the bal-
listic movement), finding a more optimal path for achieving the 
task, and familiarizing themselves with the new movement (i.e., 
smoothing their movement trajectory). Some learning processes 
could happen within a few repetitions (e.g., aligning the ballistic 
endpoint with the target), while others may require more trials and 
errors (e.g., optimizing the path in LT and NLR Task). Eventually, 
the learning may result in a decreased task completion time. These 

requirements of initial learning were consistent from the metrics 
data and aligned with other experimental results documented in 
the literature (e.g., [45, 61]). 

5.2.2 De-adaptation. When transitioning back to a 1:1 mapping, 
users might need to undergo a “re-learning” process to perform 
optimally—during the de-adaptation phase, initial performance is 
often inferior to the last few trials in the training phase, where users 
became accustomed to the 1:1 mapping. This is called “the washout 
effect” in motor learning [44, 84]. Notably, from the RTP and RS 
results in LT Task (Figure 4), users’ initial movement prediction 
was even worse in the de-adaptation block than in the training 
block (i.e., when they first put on the VR headset to learn the task)4 . 
One comment from a participant also resonated with this learning 
effect: “Wait, this was slower than normal. You did something to my 
hand.” Despite being explicitly told that the de-adaptation block 
was returning to 1:1 mapping, the participant inaccurately predicted 
that a slower-than-normal mapping needed to be learned. Therefore, 
it is crucial to consider the washout effect when rapidly switching 
between VR applications with/without movement mappings. 

5.2.3 Re-adaptation. When re-learning a movement mapping, the 
user has to restart the learning processes (i.e., improving ballistic 
movement, path, and movement smoothness). However, our results 
showed that the users were almost always better in the first few 
attempts5 . This effect is partially attributed to the “savings” in the 
motor learning literature—reacquiring learned skills is typically 
faster than learning it the first time [20, 43]. The results triggered 
some interesting questions for future work: How much can move-
ment mapping techniques be “memorized” with long-term practice? 
Can we lower this friction when re-adapting to a known (learned) 

4Student’s t-test revealed that the first trial of de-adaptation had significantly higher 
RTP (𝑝 = 0.007) and RS (𝑝 = 0.002) than training. Assumptions of t-test, including 
normality and homogeneity of variance, were supported by the Shapiro–Wilk test and 
Levene test. 
5Mann-Whitney tests suggested that the first trial of re-adaptation had significantly 
lower RS, NPE, and NJE (all 𝑝 < .02) than adaptation but not RTP (𝑝 = .32) in LT Task. 
We chose a non-parametric test because the normality assumption was violated, as 
indicated by the Shapiro-Wilk test. 
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movement mapping in VR? The proposed metrics are essential steps 
to understand the motor learning behavior for such re-adaptations. 

One notable point is that we instructed participants to complete 
the task as quickly as possible, and they could only proceed to 
the subsequent trial if they completed the task correctly. These 
instructions and study settings may impact the convergence speed 
of metrics, especially when a future study prioritizes different speed 
and accuracy trade-offs. 

5.3 Advancing Movement Mapping Techniques 
The metrics also inspired us to reflect on how to improve movement 
mapping techniques or provide appropriate feedforward/feedback 
methods to help learn these new mappings. 

5.3.1 Optimizing learning curves in metrics. Three general strate-
gies can be inferred from the learning curves (𝑦 = 𝑎 · 𝑥 −𝑘 +𝑏). First, 
we could lower the bar of the initial adaptation (i.e., the first attempt 
where the trial number 𝑥 = 1). For example, instead of providing 
a “ding” sound and switching to the new mapping abruptly, addi-
tional feedback, such as visual guidance [17], could be presented 
to users to better prepare them for the new movement mapping. 
Motor learning literature refers to a connected phenomena as par-
allel adaptation to multiple motor programs [61, 84]. An every-day 
example of it is using a different mouse (and a cursor gain) at home 
and at work. The home and work environments give a cue between 
two distinct but familiar, learnt mappings, and thereby adapting to 
those is immediate. Second, we could improve the learning rate 𝑘 
by, for instance, informing users about their movement results (e.g., 
endpoints) each trial to provide them with a more comprehensive 
understanding of how to adapt subsequently [8, 92]. Third, we could 
also try to break through their performance limits (𝑏) by showing 
a concurrent animation of an expert’s movement to reinforce them 
to execute more optimized movements [47]. 

5.3.2 Optimizing motor learning processes. Specific strategies can 
be designed based on the metrics. For example, by knowing that 
a user is constantly under/overshooting a target with the ballis-
tic movement (from RS), we could dynamically adjust the target 
position or the cursor position (i.e., the movement mapping func-
tion) to make the target easier to achieve with the first movement 
impulse. We could also visualize the optimal movement path (e.g., 
showing a straight line between the virtual hand and the target 
position), knowing users want to decrease NPE so that users could 
follow the optimal path along the way. Such feedback could help, 
in particular, the refined movement phases. In contrast, the ballistic 
movement can benefit more from initial cues (i.e., feedforward [57]) 
or adaptive changes in the mapping, like discussed above. 

However, we also want to note that such augmented feedback 
may make users too dependent on them and decrease retention [52, 
66]. Therefore, these should be applied cautiously and possibly 
considering fading them away during practice. Altogether, we be-
lieve the metrics can inspire the community to devise better VR 
interaction techniques requiring a lower movement learning cost. 

5.4 Limitations and Future Work 
We want to emphasize several limitations of the current study and 
identify additional avenues for future research. 

First, the presented metrics should not be perceived as an ex-
haustive list for quantifying motor learning in HCI. These metrics 
are the ones we deemed most reasonable and straightforward from 
the literature. Other options still exist, and specific components 
of the metrics are switchable. For example, we could replace the 
optimal path or speed/jerk profiles with assumptions from other 
optimal control models [23]. 

Second, while we took precautions in controlling user fatigue in 
the experiment (e.g., arms on the table, force breaks between tasks, 
and optional breaks between trials), the influence of fatigue was 
inevitable during the study. The fatigue effect could interplay with 
the learning effect. One possible future solution is to use models 
that simulate fatigue [11, 39, 85] to tease out the effect of learning. 

Third, visual tracking errors could play a role in the data. To mit-
igate their impact, we instructed participants to perform the pinch 
in front of the camera and also smoothed the collected data be-
fore processing. In future applications, employing similar strategies 
when utilizing these metrics might be beneficial. 

Finally, our initial motivation was to propose metrics for move-
ment mapping techniques in VR on object selection and manipu-
lation. However, we speculate that the metrics may also work for 
other interaction techniques, such as redirection techniques (which 
may apply more subtle movement mappings in VR) [29, 30] or cur-
sor movement-based techniques like Bubble Cursor [31]. The met-
rics can also provide empirical ground for reinforcement learning-
based simulation models [37, 58]. We thus release an open-source 
toolkit to help future research test the metrics’ applicability and 
evaluate new techniques in various contexts. 

6 CONCLUSION 
We have presented metrics of motor learning for analyzing and 
improving VR techniques that introduce movement mappings. The 
metrics were proposed based on the motor learning literature while 
considering specific HCI task requirements. The metrics also aimed 
to bring insights into how users learn a new movement mapping 
regarding their initial movement prediction, the closeness to an 
optimal path, and the smoothness of the movement trajectory. 

Our findings have shown that the new metrics captured learn-
ing behaviors that task completion time, a common metric for 
assessing learning in HCI, cannot. The metrics also illustrated be-
havior changes when users first learned a new movement mapping, 
returned to the normal (1:1) mapping, and re-learned the new move-
ment mapping. The suggested metrics can provide comprehensive 
insights into users’ learning process of movement mappings and 
accompany existing metrics that assess user performance at a sum-
marization level (such as task completion time). Moreover, the 
metrics can inspire strategies aimed at assisting users in more ef-
fectively acquiring a new movement mapping and optimizing their 
performance when utilizing such mappings. 
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A METRICS IMPLEMENTATION 
RTP, RS, NPE, and NJE require the following information to be 
recorded in the system: trial/movement starting time 𝑡𝑠𝑡𝑎𝑟 𝑡 , tri-
al/movement ending time 𝑡𝑒𝑛𝑑 , and movement trajectory data. 
For 3D interaction, the movement trajectory data can be a list 

of (𝑝 𝑡 𝑥 , 𝑝
𝑡
𝑦, 𝑝 𝑡 𝑧), representing the 3D position/rotation information 

from 𝑡𝑠𝑡 𝑎𝑟 𝑡 to 𝑡𝑒𝑛𝑑 in the frequency of 𝑓 . We recommend 𝑓 ≥ 50𝐻𝑧 
(i.e., recording at least every 0.02 seconds). 

With the recorded data, we can approximate the velocity profile 
(𝑣𝑡 𝑥 , 𝑣 𝑡𝑦 , 𝑣

𝑡 
𝑧), where 𝑣𝑡 = (𝑝𝑡 − 𝑝𝑡 −1) · 𝑓 , assuming 𝑣𝑡𝑠 𝑡 𝑎𝑟 𝑡 = 0𝑚/𝑠 . 

We can apply a similar strategy to compute the acceleration profile 
(𝑎 𝑡𝑥 , 𝑎 𝑡𝑦 , 𝑎 𝑡𝑧 ) and jerk profile ( 𝑗𝑡 𝑥 , 𝑗𝑡 𝑦, 𝑗𝑡 𝑧 ). Additionally, we can cal-
culate the movement distance 𝐿𝑎 by accumulating the Euclidean 
distances between the data points in the movement trajectory. 

While task completion time can be simply calculated as 𝑡𝑒𝑛𝑑 − 
𝑡𝑠𝑡 𝑎𝑟 𝑡 , both RTP and RS require an algorithm to find when the bal-
listic phase ends (𝑡𝑏 ) based on the trajectory data. We applied a 
z-score-based peak detection algorithm [9] (pseudocode in Appen-
dix A.1), which based on our pilot tests detected the initiation of a 
peak. At a high level, it identifies whether an incoming data point 
deviates away from a moving mean by, for example, three standard 
deviations. The moving mean is an average of the last, say 5, obser-
vations. Because the algorithm detects the initiation of a peak while 
we need the ending timestamp of the first ballistic movement peak, 
we feed the movement data in reverse order (i.e., from the end to 
the beginning) to calculate 𝑡𝑏 . With 𝑡𝑏 , we can calculate RTP with 
Equation 2. We can also retrieve position information (𝑝𝑡𝑏 

𝑥 , 𝑝 𝑡𝑏 
𝑦 , 𝑝𝑡𝑏 

𝑧 ) 
and (𝑝𝑡𝑒𝑛𝑑 

𝑥 , 𝑝 𝑡𝑒 𝑛𝑑 
𝑦 , 𝑝𝑡𝑒𝑛𝑑 

𝑧 ) to calculate RS. 
We can also calculate NPE once we compute 𝐿𝑎 from the move-

ment trajectory data and fill 𝐿𝑖 with the relevant task settings. 
Furthermore, NJE can be determined with the derived speed and 
jerk profiles as well as 𝐿𝑎 and 𝐷 (=𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡 𝑎𝑟 𝑡 ). Our programming 
implementation can be found in the open-source toolkit. 

A.1 Peak Detection Algorithm 
We applied a peak detection algorithm based on Z-scores [9] to 
identify the ballistic movements in speed profiles. We attach the 
pseudocode of the algorithm for reference, while more detailed 
explanations can be found in the original post [9]. The parameters 
lag=3, threshold=3, and influence=0.1 are empirically deter-
mined through trial and error. 

1 "Set parameters" 
2 lag = 3 # dynamic list that stores mean and std. 
3 threshold = 3 # signals if the new data point > mean +/- 3std. 
4 influence = 0.1 # influence of the new data point on mean and std. 
5 

6 "Initialize variables" 
7 signals = [0, ..., 0] 
8 filteredY = [y(1), ..., y(lag)] 
9 avgFilter[lag] = mean([y(1), ..., y(lag)]) 
10 stdFilter[lag] = std([y(1), ..., y(lag)]) 
11 

12 "Peak detection" 
13 for i in (lag + 1, t) 
14 if abs(y[i] - avgFilter[i-1]) > threshold * stdFilter[i-1] 
15 if y[i] > avgFilter[i-1] 
16 signals[i] = 1 # positive signal 
17 else 
18 signals[i] = -1 # negative signal 
19 filteredY[i] = influence * y[i] + (1 - influence) * filteredY[i-1] 
20 else 
21 signals[i] = 0 # no signal 
22 filteredY[i] = y[i] 
23 avgFilter[i] = mean([filteredY[i-lag+1], ..., filteredY[i]]) 
24 stdFilter[i] = std([filteredY[i-lag+1], ..., filteredY[i]]) 
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B TASKS 

B.1 Task Descriptions 
B.1.1 LT Task: Linear Translational Gain. The task requires the 
participants to move a 3D cube from a starting position (a blue 
square) to a red target circle on the table (see Figure 3 left). The 
cube is influenced by gravity, and the target circle turns green (from 
red) as long as the cube is inside the horizontal range of the circle. 
This task mimics many VR applications (e.g., Hand Physics Lab and 
Job Simulator) where a user needs to move an object on the table. 

The target circle can appear in different depths, representing the 
task assumption of difficulty levels, and in different directions with 
respect to the starting position, representing the variance levels. In 
our task setting, the targets only appear at the center or right sides 
of the table, which are supposed to be more comfortable movement 
positions [21]. This is one of the steps to prevent fatigue with 
repetitive trials, which could interplay with the learning effect. 

The participants complete the tasks in two mappings: with a 
virtual hand whose position is mapped 1:1 from the position of 
their physical hand, and with a virtual hand whose position is 
mapped with a linear translational gain. The linear gain scales 
the virtual hand movement in the depth dimension (the forward 
z-axis) according to a constant factor 𝑘 once it passes the starting 
position [48]. This mapping allows users to reach further distances 
outside their real reach while maintaining the integrity of the lateral 
movement. 

B.1.2 NLR Task: Non-linear Rotational Gain. The task requires the 
participants to rotate a 3D orange bunny to a target orientation 
as the bunny in white (see Figure 3 middle). The outline of the 
orange bunny turns green (from red) once its orientation is within 
a tolerant threshold. The three displayed axes for the bunny are 
meant to help ease the mental rotation load for users. The task 
mimics VR application scenarios such as 3D modeling, where users 
need to re-orientate an object into a desired direction [56, 93]. The 
position of the bunny is fixed to eliminate the need for object 
translation which is covered in the LT task. 

The target orientations create different difficulty levels and vari-
ance levels, depending on the rotation degrees and directions. Based 
on previous works on wrist-based input [64, 69], our task needs 
only wrist flexion and pronation if grabbing the bunny from the 
side. The required rotations are within the comfortable range [64]. 

The participants complete the tasks again in two mappings: with 
a 1:1 mapping and with a non-linear rotational gain mapping. This 
mapping is used to overcome the physical limitations of wrist ro-
tation and may assist in fine-tuning the accuracy [18, 27, 50]. We 
replicate the dynamic non-isomorphic rotation technique by Gao et 
al. [27], where the virtual hand rotation can be amplified or attenu-
ated based on the angular movement speed of the physical hand 
during manipulation. The scaling factor 𝑘 can be described by the 
following equation: 

𝑘 = 

  

0 𝑣 < 𝑣𝑚𝑖𝑛 

𝑘𝑚𝑎𝑥 · 𝑣 −𝑣𝑚𝑖𝑛 
𝑣𝑚𝑎𝑥 −𝑣𝑚𝑖𝑛 

𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥 

𝑘𝑚𝑎𝑥 𝑣 > 𝑣𝑚𝑎𝑥 

(7) 

We used the same parameters as Gao et al. [27]: 𝑣𝑚𝑖𝑛 = 5◦/𝑠 , 𝑣𝑚𝑎𝑥 = 
90◦/𝑠 , and 𝑘𝑚𝑎𝑥 = 3. The virtual hand is aligned with the physical 

hand once finishing a continuous manipulation (i.e., releasing the 
pinch). 

In our pilot tests, we found this task can be challenging for some 
users, likely due to the need for mental rotation. Therefore, we use 
this task primarily to assess the generalizability of the metrics 
by representing a scenario where the task is difficult. 

B.1.3 FA Task: Finger-to-Arm Mapping. The task requires users to 
select a white sphere (see Figure 3 right). Before selection, the user 
must place the pink cursor on the index fingertip in a cube (i.e., 
the home). The cube disappears randomly within a predefined time 
range to indicate the initiation of a selection trial. To select the 
sphere, the cursor must stay within the target sphere for a specific 
duration. The sphere’s boundary turns pink once the cursor enters 
the sphere boundary, and the countdown clock next to the target 
starts counting until task completion. This task represents a simple, 
common target selection scenario in VR [3, 7]. 

The target distances represent different difficulty levels, and the 
target directions (along the sphere formed by the home position 
and the target position) describe different variance levels. In our 
task setting, the target only appears above the left side of the table, 
allowing more precise right index finger tracking—the finger is 
used in the movement remapping technique described below. 

The participants complete the tasks in two mappings: with a 
1:1 finger-to-finger mapping, and with a multi-joint finger-to-arm 
technique called FingerMapper [80]. FingerMapper controls the vir-
tual arm movement with the movement of an index finger, which 
can help reduce arm fatigue and enables full-arm motions with 
subtle finger movements in a confined physical space. We applied 
the Attach mapping function—a user controls the proximal phalanx 
for the arm reach direction and bends their index finger to retract 
the virtual wrist to their shoulder. Essentially, the movements of 
different finger joints are used to determine the actual movement 
of the virtual arm. 

B.2 Task Parameters 
During the development and pilot study phase, we established a 
set of parameters within the task environment to balance task diffi-
culties. We provide these parameters here for replication purposes. 

1 "LT Task" 
2 difficultyLevelFar = [0.6, 0.7, 0.8] # distance for gain amplification 
3 difficultyLevelClose = [0.24, 0.28, 0.32] # distance for 1:1 mapping 
4 varianceLevel = [0, 10, 20, 30, 40] # angles to z-axis 
5 targetSize = 0.06 # target diameter 
6 scaleFactor = 8 # scale factor of gain amplification 
7 

8 "NLR Task" 
9 difficultyLevel = [-30, 50, 70] # pronation (distance in degrees) 
10 varianceLevel = [65, 60, 55, 50, 45] # flexion (direction in degrees) 
11 targetSize = 30 # tolerance angle in degrees 
12 

13 "FA Task" 
14 difficultyLevel = [0.15, 0.2, 0.25] # distance to the start position 
15 varianceLevel = [-40, -30, -20, -10, 0] # horizontal angles to z-axis 
16 heightVariance = [0, 5, 10] # randomized vertical angles to z-axis 
17 targetSize = 0.05 # sphereical target diameter 
18 startSize = 0.03 # start cube size 
19 startPosition = Vector3(0, 1.1, 0.3) # 3D position of the cube 
20 dwellDuration = 1 # required dwell time for selection 
21 randomStart = Random.Range(0.5, 0.8) # starting time after dwelling 
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C DATA PROCESSING 
We recorded the following data during the study to enable the appli-
cation of the metrics and the analysis of the results: trial completion 
time (which is equivalent to 𝑡𝑒𝑛𝑑 − 𝑡𝑠𝑡 𝑎𝑟 𝑡 ), movement trajectory 
data in the frequency of 50𝐻 𝑧 (with the FixedUpdate() function 
in Unity), and other task-relevant information such as trial number 
and condition number. The movement trajectory data were 3D cube 
positions (in meters) in LT Task, 3D bunny rotations (in radians) 
in NLR Task, and 3D cursor positions (in meters) in FA Task. The 
speed profile comes from a finite difference approximation from 
position data, and we used a kernel regression smoother ksmooth() 
in R language with 𝑏𝑎𝑛𝑑𝑤 𝑖𝑑𝑡 ℎ = 4 to stabilize the calculated speed 
profile. The number of points in the kernel smoother to evaluate the 
fit (the 𝑛.𝑝𝑜𝑖𝑛𝑡 𝑠 parameter) equals the number of logged timestamps 
in a trial. 

We then treated a trial as an outlier if its task completion time 
was three standard deviations away from the average value of 
all participants in a learning trial. Note there were 120 learning 
trials across the four learning blocks for each participant in a task. 
We removed those outliers because they were far from typical 
performance, possibly due to participants’ confusion in that trial [7, 
92]. Through this process, we discarded 36 trials (1.9%) in LT Task, 
47 trials (2.4%) in NLR Task, and 20 trials (1.0%) in FA Task. 

To analyze the validity of the metrics, we fit power functions 
(Equation 1) to the LT Task data. We used a general-purpose opti-
mization function in R language that employs the limited-memory 
Broyden–Fletcher–Goldfarb–Shanno algorithm (i.e., optim() func-
tion with L-BFGS-B) to minimize the sum of squared errors. The 
lower and upper boundaries of 𝑎, 𝑘 , and 𝑏 were set as (−∞, 0, 0) and 

(∞, ∞, ∞). Furthermore, we calculated the coefficient of determi-
nation (𝑅 2) and the root mean square error (𝑅𝑀𝑆 𝐸 ) to estimate the 
goodness of fit. While we referred to the rule of thumb thresholds 
for 𝑅 2 in behavioral science (‘small’, ‘medium’, and ‘large’ values 
are 0.01, 0.09, and 0.25) [15], we were also aware 𝑅 2 are context 
dependable and took precautions when interpreting them. We also 
used 𝑅𝑀𝑆 𝐸 to gauge how far predictions fall from the ground truth. 
We extended this method to NLR Task, FA Task, and individual data 
for evaluating generalizability. 

The resiliency of a metric was determined through linear mixed 
models (lmer() in the lmerTest package) that test whether there 
was a significant effect of difficulty levels on the metric data. We 
developed the following formula: MetricData ∼ DifficultyLevel + 
VarianceLevel + Phase ∗ RepetitionsWithinPhase + (1 | Participant). 
We treated the difficulty levels, variance levels, phases, repetitions 
within a phase, and a known interaction between phases and rep-
etitions within a phase as continuous fixed effects. We considered 
participants as a random effect. All data were normalized with the 
bestNormalize function, which estimated the best normalizing 
function from a suite of transformations (e.g., Box-Cox, log, and 
Yeo-Johnson). We visually inspected the Q-Q plots to ensure the 
residuals reasonably aligned with the normality assumption. 

D ADDITIONAL STUDY RESULTS 
Figure 6 concatenates training and de-adaptation of NPE in LT 
Task. Figure 7 and 8 show the fitting results of the power function 
regarding NLR Task (non-linear rotation) and FA Task (finger-to-
arm mapping). Figure 9 illustrates how different mappings and 
difficulty levels influenced metrics. 
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Traning De-adaptation

Figure 6: Concatenating training and de-adaptation data of NPE in LT Task. Data points are averaged across participants. 
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Figure 7: Fitting results of the power function in NLR Task (non-linear rotation). Data points are averaged across participants. 
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R2 = 0.49, RMSE = 0.07
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Figure 8: Fitting results of the power function in FA Task (finger-to-arm mapping). Data points are averaged across participants. 
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Figure 9: Line plots on how mappings M and difficulty levels D, browsed every three trials (a chunk), influenced metrics. 
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