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Figure 1: Temporal target selection examples. A player is about to (1) shoot an enemy spaceship in Demon Attack, (2) fire an
arrow towards a balloon in a VR Archery game in The Lab, (3) control the jump of a character onto a waterwheel in Moss,
(4) attack a minion with a finishing shot to get the most gold while minions are hitting each other in Dota 2, and (5) dodge
an enemy’s attack when it is close so that the character can immediately fight back in Elden Ring. The player needs to wait
and hit the input trigger within a limited time window to complete the task successfully. The player estimates how long the
bullet/arrow/jump/attack/dodge takes based on their previous experiences with the game.

ABSTRACT
Temporal target selection requires users to wait and trigger the

selection input within a bounded time window, with a selection

cursor that is expected to be delayed. This task conceptualizes, for

example, a variety of game scenarios such as determining the tim-

ing of shooting a projectile towards a moving object. In this work,

we explore models that predict “when” users typically perform a

selection (i.e., user selection distribution) and their selection error

rates in such tasks. We hypothesize that users react to temporal

factors including “distance”, “width”, and “delay” as how they treat

the corresponding variables in spatial target selection. The derived

models are evaluated in a controlled experiment and an MTurk-

based online study. Our research contributes new knowledge on
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user behavior in temporal target selection tasks and its potential

connection with its spatial correspondence. Our models and conclu-

sions can benefit both users and designers of relevant interactive

applications.
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1 INTRODUCTION
Explainable user models can enhance our understanding of human-

computer interaction behaviors and inform the design of relevant
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applications. This research concerns user behavioral modeling for a

task scenario called temporal target selection. In a temporal target

selection task, a user must wait for a time𝐷𝑡 (temporal distance) for

a target to become selectable and trigger the input within a limited

time window𝑊𝑡 (temporal width) to select the target successfully.

The selection event happens 𝑅𝑡 in time after the user input, which

is expected by the user (expected delay).

This task is a conceptualization of many application scenarios.

For example, imagine a player in a first-person archery game aiming

an arrow and firing it when a target is about to reach the crosshair.

The player must anticipate when the target will reach the crosshair

based on its movement (𝐷𝑡 ) and trigger the selection within a

limited time period (𝑊𝑡 ) so that the arrow can hit the target. The

arrow needs to travel for a certain time period to reach the target,

so the player must estimate the cursor travel time (𝑅𝑡 ) based on

previous experiences and take this “delay” into account to trigger

the selection earlier. The temporal factors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) can even

be encoded in more abstract forms/animations (more in Figure 1).

Note that the task only concerns users’ temporal precision (to hit

the target at the correct timing), while the spatial movement of

the cursor is negligible. Despite being prevalent in games, models

that can explain and predict user behaviors in such tasks are still

under-explored.

To address this challenge, we propose temporal target selection

models that predict user selection distribution (encapsulates “when”

users typically perform a selection) and selection error rate. Our

initial model is based on the hypothesis that the temporal factors

are treated as individual cues for users to decide “when” to exe-

cute the input, as the corresponding spatial factors are used to

decide “where” to execute the input. We conduct our first study

in a controlled VR experiment where we evaluate different model

variants and compare the impact of the corresponding factors in

temporal and spatial target selection. We demonstrate that the pro-

posed models provide accurate prediction results and are robust

under cross-validation tests. We further conduct a second, MTurk-

based online study to explore the generalizability of the models

and conclusions. We show that our models can still provide helpful

estimations in scenarios with more complex visual encoding, larger

parameter ranges, and less-controlled environments. Additionally,

we discover how temporal factors typically influence user behavior.

For example, we found whether the expected delay will push the

selection distribution forward or backward in time depending on

the value of temporal distance.

Our primary contributions include:

• Models for predicting user selection distribution and error

rate in temporal target selection.

• Findings and implications based on two user studies regard-

ing user behavior in temporal target selection.

• Open-source datasets on three different temporal target se-

lection applications collected from our studies.

Our models and conclusions bring new knowledge on human be-

havior in temporal target selection tasks and can benefit both de-

signers and users of relevant applications. For example, without

extensive user testing, game designers can be more confident in

determining the appropriate difficulty levels with the estimated

user selection errors. Players can also better approach challenging
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Figure 2: Spatial demonstration of a temporal target selec-
tion task. The blue rectangle is a target, and the pink circle
represents a cursor. The target takes 𝐷𝑡 (temporal distance)
to become selectable, and𝑊𝑡 (temporal width) to pass the
selectable region. The cursor takes 𝑅𝑡 (expected delay) to trig-
ger a selection event after user input. The selection is only
successful if the cursor “hits” the target in the selectable re-
gion (i.e., input is triggered within [𝐷𝑡 − 𝑅𝑡 , 𝐷𝑡 − 𝑅𝑡 +𝑊𝑡 ]).

game scenarios by understanding how temporal factors typically

influence selection.

2 PROBLEM FORMULATION
To formalize the problem, we consider an example scenario illus-

trated in Figure 2. A target (blue rectangle) appears and travels on

a straight line. To select the target, the user must trigger a user
input event which shoots forward a selection cursor (pink circle).

The user’s goal is to time the user input event so that the selec-

tion cursor “collides” with the target, which triggers a successful

selection event. We define the selectable region to be the interval of

time within which a successful selection event can be detected. In

addition, we define the temporal distance 𝐷𝑡 to be the time it takes

for the target to reach the selectable region and the temporal width
𝑊𝑡 to be the time the target remains selectable. The expected delay
𝑅𝑡 is the amount of time it takes for the cursor to reach the target’s

path, and the user should have an estimation of 𝑅𝑡 based on existing

experience. To successfully select the target, users must trigger the

user input event within the time interval of [𝐷𝑡 −𝑅𝑡 , 𝐷𝑡 −𝑅𝑡 +𝑊𝑡 ].
Note for each user input event occurring at 𝑡input, the corre-

sponding selection event (an individual data point of a selection

distribution) is calculated as 𝑡input + 𝑅𝑡 − 𝐷𝑡 . The selection distri-

bution is thus relative to the selectable region (by treating the time

that the target first becomes selectable as the origin) rather than

the usual time scale used by the input event that treats the onset

timing of the target as the origin.

In this problem definition, we only consider the case where

the user must decide when to trigger the selection, as opposed to

deciding the spatial position of the selection. In other words, unlike

in a spatial target selection task, the user cannot aim the cursor

with the input device (e.g., a controller) but can only control the

cursor’s onset timing through, for example, a button press. The

upper bound of the input time window (𝐷𝑡 − 𝑅𝑡 +𝑊𝑡 ) must be

larger than human reaction time (∼0.25s), otherwise typical users
would not be able to select the temporal target successfully without

prediction.
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3 RELATEDWORK
Our temporal target selection task concerns how temporal factors

like “distance”, “width”, and “delay” may influence “when” users are

likely to perform a selection (i.e., user selection distribution). This

section reviews relevant but different temporal tasks explored in the

literature, considering when users typically launch a selection input.

We then summarize spatial target selection models that focus on

predicting where users typically select a given spatial target with a

certain “distance” and “width”, which inspired our temporal models.

After that, we scrutinize the factor of “delay” in our temporal target

selection task.

3.1 Temporal target selection
In our temporal target selection task, user selection distribution

describeswhen users typically select a given temporal target; it sum-

marizes the spread of selection events recorded by a computer in the

time domain. Existing literature has studied several relevant but dif-

ferent temporal tasks, including reaction, coincidence-anticipation,

temporal pointing, and interception.

Reaction tasks require users to respond to a stimulus as rapidly

as possible [39]. In these tasks, the onset of the stimulus is unpre-

dictable. The user reacts to the stimulus once it appears (𝐷𝑡 = 0),

and the time window for selection is minimal because it must be

executed as fast as possible (𝑊𝑡 = 0).

Coincidence anticipation tasks require users to respond when a

moving stimulus coincides with a fixed object [2, 30]. These tasks

expect users to respond at the exact instant of the coincidence

and do not measure the success or failure of a response based on

whether the response is provided within a pre-determined time

window (𝑊𝑡 = 0).

Temporal pointing tasks require the selection of a target within

a limited time window with the following prerequisites: (1) the

target appears repetitively in time so that a user forms expectations

on how often the selection should be repeated, and (2) the visual

stimulus is smaller than human reaction time (∼ 0.25s) so that the

user does not simply react to it [23–26]. While a temporal pointing

task and our task both require some repetitions of the selection

action for users to form the mental model (𝑅𝑡 in our case), the

former expects users to synchronize with some repeating targets,

while our task does not assume this. Furthermore, the expected

delay 𝑅𝑡 was not considered in temporal pointing tasks.

Interception tasks require a user to capture a moving object with

an intercepting effector (e.g., a hand) [17, 40]. In such tasks, the

effector and the target must coincide at the exact location (spatial)

and time (temporal) for an interception to occur. However, our task

focuses on scenarios where the spatial movements of the effector

are negligible. The additional 𝑅𝑡 factor was also not acknowledged

in previous interception tasks.

In sum, the temporal target selection task we aim to model has

several unique properties as compared to the temporal tasks studied

by previous research. In our task, (1) a temporal target is needed

(𝑊𝑡 > 0); (2) the actual selection event is delayed after user in-

put (𝑅𝑡 > 0), and the user has an estimation of the delay; (3) the

minimal time for the user to make a successful selection based on

the visual stimulus (𝐷𝑡 +𝑊𝑡 − 𝑅𝑡 ) needs to be larger than human

reaction time (∼ 0.25s), as typical users will not be able to make a

successful selection otherwise; and (4) the spatial task requirement

(e.g., moving an effector spatially) is negligible.

3.2 Spatial target selection
Spatial target selection requires users to hit a target (width𝑊𝑠 and

distance 𝐷𝑠 ) in the spatial domain (e.g., a button on a screen) with

a movable cursor. Numerous models have been proposed to under-

stand user behaviors in such tasks. For example, Fitts’s law and its

descendants [13, 21, 28, 36] are widely applied in HCI research to

predict cursor movement time for selecting a given target.

More relevant to our research are models that predictwhere users
typically select a given spatial target. This is typically termed user

selection distribution or endpoint distribution, which represents

the spread of cursor positions (or orientations with 3D Raycast-

ing) when the selection is triggered. Early endeavors on selection

distribution and speed-accuracy tradeoff found that the selection

endpoints can be approximated by Gaussian (1D) or bi-variate

Gaussian (2D) distributions [33, 46].

Later works have investigated how different spatial factors like

𝑊𝑠 and 𝐷𝑠 may affect user selection distribution of spatial targets

with various input devices/modalities. Grossman and Balakrishnan

[14] and Grossman et al. [15] found that the spread of hit (distribu-

tion standard deviation) increases with 𝐷𝑠 by a constant factor for

puck-based input. Bi and colleagues [3–5] demonstrated a strong

linear relationship between the distribution variance and𝑊 2

𝑠 for

finger touch input on touchscreens. Yu et al. [50] explored pointing

selection distribution in VR and found both𝑊𝑠 and 𝐷𝑠 could play a

role in the mean and variance of the distribution depending on the

input modality (head/hand pointing). Yamanaka and Usuba [48]

later found that there was no apparent benefit of integrating 𝐷𝑠 for

predicting distribution variance in an on-screen-start pointing task

with touchscreens. Huang and colleagues [18, 19, 52] found that

only𝑊𝑠 and target speed would affect the selection distribution

in their mouse input-based moving target selection tasks. These

findings on how spatial factors (i.e.,𝑊𝑠 and 𝐷𝑠 ) may influence user

selection distribution inspired our initial hypothesis for temporal

target selection.

3.3 Latency and Expected Delay
Various channels can defer the actual selection event (as determined

by the computing system) after the user forms a selection inten-

tion. Users’ motor delays caused by, for example, neuromuscular

transmission lags, lie between the selection intention and the user

click action [31, 45]. In addition, the user click action, which is

the rapid movement of the user’s finger pressing the trigger, also

defers the actual input event. Previous research related to spatial

pointing, such as the application of Fitts’s law in HCI [36], usually

assume that the effects of such delays are negligible as compared

to the spatial pointing task itself and do not take these factors into

account.

Another source of the delay comes from end-to-end latency,

which is normally referred to as the unintended total time elapsed

between a user’s initiation act (e.g., a button press) and the sys-

tem’s responses [26]. Multiple factors can contribute to end-to-end

latency in an interactive system, including device delays, network

delays, and processing delays [7, 8, 26, 32, 47]. When end-to-end
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latency reaches a problematic level (i.e., significant latency that is

perceptible by users), it can shift user’s input distribution and affect

user performance [1, 20].

In contrast to previous research, our work focuses on expected
delay (𝑅𝑡 ), which represents the user-anticipated delay between the

selection action and the actual selection event. Unlike end-to-end

latency, which is usually unexpected or not intended, expected

delays are anticipated by users according to their previous expe-

riences. For example, players have a rough estimate of the bullet

travel speed because they have played with the weapon a few times.

4 HYPOTHESES AND MODELS
4.1 Hypotheses
To investigate how users react to temporal factors including “dis-

tance” (𝐷𝑡 ), “width” (𝑊𝑡 ), and “delay” (𝑅𝑡 ) in temporal target se-

lection, we first took inspiration from relevant findings in spatial

target selection. Specifically, we assume that users’ responses (i.e.,

user selection distribution) are similarly affected by corresponding

variables in spatial and temporal target selection tasks. In this case,

𝐷𝑡 and 𝐷𝑠 both represent the “distance” before a successful hit.𝑊𝑡

and𝑊𝑠 stand for the “width” for a successful hit. We interpret 𝑅𝑡
and 𝑅𝑠 , as will be illustrated in Section 4.2, as the estimated “dis-

tance” between a nominal target and an actual (but invisible) target.

We treat all temporal factors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) as individual cues for

users to decide “when” to execute the input, as spatial factors (𝐷𝑠 ,

𝑊𝑠 , and 𝑅𝑠 ) are used to decide “where” to execute the input.

The assumption is motivated by Walsh’s A Theory Of Magnitude
(ATOM). ATOM hypothesizes that space and time information are

linked by a common metric for action [43]. A spatial or temporal

event input (e.g., distance and duration) is handled by a shared ana-

logue magnitude system to produce motor output (an estimation

of how fast and how long) [27, 43]. Based on ATOM, a potential

inference is that the corresponding spatial and temporal informa-

tion, as processed by a common mechanism, can similarly influence

perception and response. Evidence of this includes previous studies

that have shown, for example, that discriminating temporal and

spatial magnitude both follow Weber–Fechner’s law, which states

that the just noticeable difference in a stimulus is a constant ratio

of the original stimulus [10, 37, 38].

Based on these hypotheses, we built an initial model that predicts

user selection distribution N(𝜇, 𝜎2) and error rate 𝐸 in temporal

target selection based on established literature in spatial target se-

lection. The model takes the temporal width𝑊𝑡 (time that a target

remains selectable), temporal distance 𝐷𝑡 (time for the target to

reach the selectable region after its appearance), and expected de-

lay 𝑅𝑡 (user-anticipated time for the cursor to reach the selectable

region) as input and produces estimated mean 𝜇 and standard devia-

tion 𝜎 of the selection distribution, which is assumed to be Gaussian,

and with error rate 𝐸. We detail our modeling process in the fol-

lowing.

4.2 Variable mapping
To establish an initial temporal model based on our hypotheses, we

first examine how spatial and temporal variables correspond to each

other by mapping a 1D spatial target selection task to our temporal

target selection task (see Figure 3). In the temporal task, a user
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Figure 3: An analogy of a temporal target selection task (top)
and a 1D spatial target selection task (bottom). In the tempo-
ral task, the user waits and triggers the input 𝑅𝑡 before the
arrival of a nominal target to make a successful selection.
In the spatial task, the user moves an input cursor towards
a nominal target and triggers the input 𝑅𝑠 in front of the
nominal target to make a successful selection. In both cases,
the user in fact needs to trigger the input to hit an actual (but
invisible) target that is 𝑅𝑡 or 𝑅𝑠 ahead of the nominal target.

triggers the onset of a selection cursor, which is delayed by 𝑅𝑡 , to

hit a moving target with temporal width𝑊𝑡 and temporal distance

𝐷𝑡 . We name the visible moving target as the nominal target. To
select the nominal target successfully, the user must trigger the

input 𝑅𝑡 earlier in time, so that the delayed selection cursor can

“collide” with the target. This is equivalent to triggering the input

within a bounded time window𝑊𝑡 that is always 𝑅𝑡 ahead of the

selectable region. We name this input time window as the actual
(but invisible) target (see Figure 3 top).

Correspondingly, in the 1D spatial selection task, the user moves

an input cursor to hit an actual (but invisible) target, given a nominal

target with spatial width𝑊𝑠 and spatial distance 𝐷𝑠 . The actual

target has width𝑊𝑠 and stays 𝑅𝑠 ahead of the nominal target (see

Figure 3 bottom).With such a formulation, the temporal distance𝐷𝑡

and temporal width𝑊𝑡 are directlymapped onto the spatial distance

𝐷𝑠 and spatial width𝑊𝑠 . The expected delay 𝑅𝑡 is reconstructed as

the “distance in time” between the actual and the nominal target

and is mapped onto the “distance in space” 𝑅𝑠 . In both cases, the

user must estimate this “distance” to hit the actual (but invisible)

target successfully. That is, the temporal task is successful only

if the input is triggered within [𝐷𝑡 − 𝑅𝑡 , 𝐷𝑡 − 𝑅𝑡 +𝑊𝑡 ], which
has the same successful criterion as the spatial selection task—

the cursor movement amplitude (towards the target) is between

[𝐷𝑠 − 𝑅𝑠 , 𝐷𝑠 − 𝑅𝑠 +𝑊𝑠 ]. The user should have a prior estimation

of 𝑅𝑡 and 𝑅𝑠 based on previous experiences.

Admittedly, we define the abstract spatial selection task mainly

to demonstrate how temporal and spatial factors correspond to

each other, so that we can infer the effect of temporal factors on

selection distributions based on empirical results collected from

spatial target selection research. However, such a spatial selection

task also has practical applications. Existing research has suggested

that the effective input region (the actual but invisible target) can

be shifted from the perceived visual target because of interface

designs [41, 42] or through the use of predictive systems [12, 49, 50].
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4.3 Selection distribution mapping
Based on the assumption that the user responds to the correspond-

ing variables in spatial and temporal target selection tasks in a

similar manner, we explore how user selection distribution may

change according to 𝐷𝑠 ,𝑊𝑠 , and 𝑅𝑠 in the 1D spatial target selec-

tion task, which provides us insights for deriving a model in the

temporal domain.

Previous literature suggests that the selection distribution of

spatial target selection tasks can be approximated by a Gaussian

distributionN(𝜇𝑠 , 𝜎2𝑠 ) [3, 14, 29, 34, 44, 50]. The center of the distri-
bution 𝜇𝑠 is affected by both target width and movement amplitude,

presumably in a linear relationship [50]. Intuitively, a larger and

distant object can shift the center of the selection distribution closer

to the edge of the object. The magnitude of the effect can depend

on the input modality and the variable range tested in the experi-

ments. For example, existing research has shown that it is useful

to add movement amplitude to predict the center of the distribu-

tion with head-based input (a sloppier pointer), but not hand-based

input [48, 50]. To account for all potential effects, it is reasonable

to assume a linear relationship of 𝜇s = 𝑝0 + 𝑝1 (𝐷𝑠 − 𝑅𝑠 ) + 𝑝2𝑊𝑠 ,

where the movement amplitude of the cursor to select the actual

target is represented by (𝐷𝑠 − 𝑅𝑠 ).
Previous findings have also suggested that the standard deviation

of the distribution 𝜎𝑠 can relate linearly to both target width and

movement amplitude [4, 5, 14, 50]. Larger target width enables a

wider possible area for selection (e.g., 𝜎2 ∝ 𝑊 2
in Bi et al. [4]),

and larger movement amplitude causes larger variances in ballistic

selection movements (e.g., 𝜎 ∝ 𝐷 in Grossman et al. [14]). Thus,

according to the literature, another linear relationship that can be

established based on the actual movement amplitude (𝐷𝑠 − 𝑅𝑠 ) and

the target width (𝑊𝑠 ) is 𝜎s = 𝑞0 + 𝑞1 (𝐷𝑠 − 𝑅𝑠 ) + 𝑞2𝑊𝑠 .

Since there is no existing research on how the distance between

the nominal and the actual target (𝑅𝑠 ) affects the selection distribu-

tion, so we assume 𝑅𝑠 has a linear effect on both 𝜇𝑠 and 𝜎𝑠 . Intu-

itively, we hypothesize that a larger 𝑅𝑠 can further shift the whole

distribution (𝜇𝑠 ) and increase the uncertainty in the distribution

(𝜎𝑠 ). Therefore, we conclude that the selection distribution of the

1D spatial target selection task can be approximated by N(𝜇𝑠 , 𝜎2𝑠 ),
where 𝜇𝑠 and 𝜎𝑠 can be calculated via Equation 1 and 2. The in-

tercept of both equations (𝑝0 and 𝑞0) aggregates imprecision and

noise from the input device and the internal human motor control

system.

𝜇𝑠 = 𝑝0 + 𝑝1 (𝐷𝑠 − 𝑅𝑠 ) + 𝑝2𝑊𝑠 + 𝑝3𝑅𝑠 (1)

𝜎𝑠 = 𝑞0 + 𝑞1 (𝐷𝑠 − 𝑅𝑠 ) + 𝑞2𝑊𝑠 + 𝑞3𝑅𝑠 (2)

In a temporal target selection task, we assume all temporal fac-

tors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) are treated as individual cues for users to

decide “when” to execute the input, similarly to how spatial factors

(𝐷𝑠 ,𝑊𝑠 , and 𝑅𝑠 ) are used to decided “where” to execute the input.

Therefore, to formulate our hypothesized model, we derived two

linear relations (Equation 3 and 4) for the temporal selection distri-

bution N(𝜇, 𝜎2) based on the spatial correspondence. Coefficients

including 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑏0, 𝑏1, 𝑏2, and 𝑏3 must then be empirically

determined.

𝜇 = 𝑎0 + 𝑎1 (𝐷𝑡 − 𝑅𝑡 ) + 𝑎2𝑊𝑡 + 𝑎3𝑅𝑡 (3)

𝜎 = 𝑏0 + 𝑏1 (𝐷𝑡 − 𝑅𝑡 ) + 𝑏2𝑊𝑡 + 𝑏3𝑅𝑡 (4)

Rt

User Input DistributionSelection Distribution Accuracy

Wt

!(μ, σ2) !(μ, σ2)

Dt

!(μ + Dt − Rt, σ2)

Dt

Figure 4: The relationship between selection distribution
and user input distribution (left). Selection accuracy can be
calculated by integrating a Gaussian distribution (right).

4.4 Selection error rate prediction
Similarly to previous research (e.g., [5]), by plugging 𝜇 and 𝜎 into

the probability density function of Gaussian distribution (Equation

5) and taking an integral on the selectable area (Equation 6, Figure

4 right), we can compute the selection error rate.

𝑓 (𝑡) = 1

𝜎
√
2𝜋

𝑒
−(𝑡−𝜇)2

2𝜎2
(5)

𝐸 = 1 −
∫ 𝑊𝑡

0

𝑓 (𝑡)𝑑𝑡 = 1 − 1

2

[erf (𝑊𝑡 − 𝜇

𝜎
√
2

) + erf ( 𝜇

𝜎
√
2

)] (6)

where erf (𝑧) is commonly used in Gaussian distribution integra-

tion.

erf (𝑧) = 2

√
𝜋

∫ 𝑧

0

𝑒−𝑡
2

𝑑𝑡 (7)

5 STUDY 1: CONTROLLED EVALUATION
In this study, our goal was to evaluate the hypothesized model

and analyze how temporal factors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) affect user se-

lection distribution and error rate as compared to their spatial

correspondence. Therefore, we conducted a controlled temporal

target selection experiment in VR. We chose VR because it allowed

us to immerse participants in the experimental environment, and

we could potentially compare our results with a recent study that

investigated head- and controller-based spatial target selection dis-

tribution in VR [50].

5.1 Method
5.1.1 Participants. We recruited 16 participants (8 women, 8 men)

with diverse educational backgrounds from a local university. Their

average age was 23.5 (SD = 2.4). Their self-rated familiarity score

with VR systems was 4.6 on average (SD = 1.0) on a 7-point Likert

scale. All of them had normal or corrected-to-normal vision.

5.1.2 Apparatus and materials. The application was developed

with Unity3D and ran on an Intel Core i7 processor laptop with a

dedicated NVIDIA RTX 2070 graphics card. Participants performed

the experiment with an Oculus Quest 2 headset (featuring 1832

× 1920 pixel resolution per eye) and a right-hand Oculus Touch

controller.
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Figure 5: A demonstration of the experimental environment
in Study 1.

5.1.3 Design. The experiment employed a 3× 2× 4within-subjects

design with three independent variables: Temporal Distance, Tem-

poral Width, and Expected Delay. The levels were chosen as

follows, leading to 24 experimental conditions:

• Temporal Distance (𝐷𝑡 ): 0.4s, 0.5s, and 0.6s

• Temporal Width (𝑊𝑡 ): 0.1s and 0.2s

• Expected Delay (𝑅𝑡 ): 0.05s, 0.1s, 0.15s, and 0.2s

These parameters were determined from a pilot study with the

aim of not making the task too easy (information-saturated) or too

difficult (faster than reaction time ∼ 0.25s), while still covering

a variety of difficulty levels. In the most difficult condition, the

response time for a successful selection (𝐷𝑡 +𝑊𝑡 − 𝑅𝑡 ) was 0.3s.

In the experiment, the order of 𝑅𝑡 was counterbalanced across

participants. Within each 𝑅𝑡 , each𝑊𝑡 × 𝐷𝑡 experimental condition

was generated 20 times, and all these generated trials appeared in a

randomized order. This simulated the condition when participants

had a constant estimate of𝑅𝑡 in each block and responded to various

targets with different properties (as per𝑊𝑡 and 𝐷𝑡 ).

5.1.4 Task. Participants were asked to hit a blue target moving

leftward along a horizontal line with a sphere (selection cursor)

moving forward. We varied the sphere’s color to distinguish be-

tween different 𝑅𝑡 , with colors chosen from a colorblind-friendly

palette. Figure 5 illustrates the task environment.

Targets always appeared at the same starting position in the

virtual space ®𝑝𝑡 = (0.3,−0.5, 1.75). The target speed was adjusted

according to 𝐷𝑡 (the time for the target to reach the hittable area),

and the target width was modified based on 𝑊𝑡 (the time that

the target remained hittable). Similarly, the cursor started at the

same position ®𝑝𝑏 = (−0.7,−0.5, 1.05), and the its speed changed

according to 𝑅𝑡 . A successful hit was determined when the cursor

front reached the horizontal line and the cursor coincided with the

object. Programmatically, the hit was pre-calculated based on when

participants pressed the selection trigger to avoid latency caused

by collision detection. After the cursor reached the horizontal line,

the animation paused for 0.1s, and quick sound feedback was given

to reflect the correctness of the hit. The subsequent trial was then

randomly generated within the next (0.5s, 1.0s) interval.

5.1.5 Procedure. The whole study lasted approximately 25 min-

utes for each participant. The study was designed to be short to

avoid participant disengagement [51]. Before coming to the lab,

participants filled in a questionnaire to collect their demographic

information. Upon arrival, they were introduced to the experiment

and signed a consent form. Next, they were invited to wear a VR

headset and were given around 1 minute to familiarize themselves

with the device where they could look around the experimental

environment in VR. They then adjusted their sitting position to

make sure they could see both the cursor and the target. We in-

structed participants to perform the task as accurately as possible.

Each session (4 sessions as per 𝑅𝑡 ) consisted of a warm-up period

and a formal experiment period. During the warm-up, we asked

participants to become familiar with the time for the cursor to

reach the selectable region (𝑅𝑡 ). After at least 5 practice trials, they

could proceed to the next stage by pressing a controller button if

they could confidently make a selection. The first 10 starting trials

of the formal experiment period were sampled from the 𝐷𝑡 ×𝑊𝑡

conditions uniformly and at random and discarded as practice trials.

Participants took a short break after completing each block, where

they could decide how long to rest and whether to take off the

headset. Participants received a $10 gift voucher after completing

the experiment.

5.2 Results
In total, we collected 7680 data points (16 participants × 3𝐷𝑡 × 2𝑊𝑡

× 4 𝑅𝑡 × 20 repetitions) from the experiment. We first removed 40

trials (0.52%) of outliers in which the user input time was above or

below three standard deviations from the mean (𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑.) in

each condition. These outliers could be induced by confusion/mind-

wandering of the participants. In the next sections, we present

the results of normality testing, statistically effects of independent

variables, model fitting, and information criterion measures.

5.2.1 Normality of the response distribution. We verified whether

the selection distribution obtained from the experiment followed

a Gaussian distribution as expected. We tested the normality of

each task condition per user (16 participants × 24 conditions) using

Shapiro-Wilk tests with significance level 𝛼 = .05. We found that

84.4% of the 384 distributions obtained were normally distributed

as in these cases the null hypothesis that the sample came from

a normally distributed population could not be rejected. For the

individual who met the normality distribution at the lowest rate,

70.8% of the conditions were found to be normal. We thus included

all participants’ data for analysis.

5.2.2 Effects of independent variables. We first evaluated the nor-

mality assumption of parametric analysis with Q-Q plots, which

suggested strong fits of normality for all conditions (Q-Q plots

are attached in the supplementary material
1
). We thus employed

repeated-measures ANOVA (RM-ANOVA, 𝛼 = 0.05) and general-

ized eta-squared (𝜂2
𝐺
, an effect size measure) to explore the effects

of temporal factors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) on 𝜇 and 𝜎 of the selection

distributions. We applied Greenhouse-Geisser correction when the

sphericity assumption was violated, as indicated by Mauchly’s test

for sphericity.

Table 1 summarizes the results from the statistical tests regarding

𝜇 and 𝜎 . Overall, the RM-ANOVA indicated that 𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 all

had statistically significant main effects on 𝜇. It also revealed inter-

action effects between 𝐷𝑡 × 𝑅𝑡 and𝑊𝑡 × 𝑅𝑡 . Another RM-ANOVA

showed that 𝐷𝑡 ,𝑊𝑡 , and 𝐷𝑡 × 𝑅𝑡 had significant main effects on

1
https://github.com/Davin-Yu/TemporalSelection-CHI2023

https://github.com/Davin-Yu/TemporalSelection-CHI2023


Modeling Temporal Target Selection: A Perspective from Its Spatial Correspondence CHI ’23, April 23–28, 2023, Hamburg, Germany

Table 1: Statistical effects of factors on 𝜇 (left) and 𝜎 (right).

𝐹𝑎𝑐𝑡𝑜𝑟 𝑑 𝑓
effect

𝑑 𝑓error 𝐹 𝑝 𝜂2
𝐺

Sig?

𝐷𝑡 1.299 19.485 371.835 .000 .802 yes

𝑊𝑡 1 15 48.422 .000 .116 yes

𝑅𝑡 3 45 15.993 .000 .162 yes

𝐷𝑡 ×𝑊𝑡 2 30 2.804 .076 .009 no

𝐷𝑡 × 𝑅𝑡 2.888 43.316 81.547 .000 .431 yes

𝑊𝑡 × 𝑅𝑡 3 45 4.282 .009 .014 yes

𝐷𝑡 ×𝑊𝑡 × 𝑅𝑡 6 90 0.719 .635 .005 no

𝐹𝑎𝑐𝑡𝑜𝑟 𝑑 𝑓
effect

𝑑 𝑓error 𝐹 𝑝 𝜂2
𝐺

Sig?

𝐷𝑡 2 30 293.637 .000 .527 yes

𝑊𝑡 1 15 11.979 .003 .027 yes

𝑅𝑡 1.786 26.790 2.378 .082 .021 no

𝐷𝑡 ×𝑊𝑡 1.266 18.993 1.394 .264 .008 no

𝐷𝑡 × 𝑅𝑡 6 90 4.564 .000 .046 yes

𝑊𝑡 × 𝑅𝑡 3 45 0.206 .892 .002 no

𝐷𝑡 ×𝑊𝑡 × 𝑅𝑡 6 90 1.539 .175 .015 no

𝜎 . Pairwise comparison results can be found in the supplementary

material.

The 3D scatter plots in Figure 6 demonstrate the interaction rela-

tionship among 𝐷𝑡 and 𝑅𝑡 with regard to 𝜇 and 𝜎 . Generally, when

𝐷𝑡 increased, 𝜇 decreased (selections were performed earlier in the

selection region), while 𝜎 increased (wider spread of selections).

The speed of the increases/decreases depended on 𝑅𝑡—the impact

of 𝐷𝑡 on both 𝜇 and 𝜎 become larger as 𝑅𝑡 increased.

It is shown from the effect size measures that 𝐷𝑡 and 𝑅𝑡 were

predominant cues for determining the center of the distribution 𝜇,

and 𝐷𝑡 had a large effect on determining the standard deviation of

the distribution 𝜎 (all 𝜂2
𝐺

> 0.14 as a rule of thumb for a large effect

size [9]).

5.2.3 Model Candidates. In addition to the hypothesized model

introduced in Section 4 (which we call the hyp model), we also

included two model variants derived from our user data for com-

parison. As discussed, the effect magnitude of each temporal factor

on the selection distribution (𝜇 and 𝜎) may vary depending on the

input modality and the tested variable range in the experiment.

Therefore, a simplified model that only incorporates main/simple

effects with a large effect size may provide enough explanation

power for a given task scenario. Thus, we deemed that a temporal

factor should be incorporated into our first comparison model—the

simple model—if it has a large effect size on 𝜇 or 𝜎 based on the

collected data (𝜂2
𝐺

> 0.14). In this case, 𝐷𝑡 and 𝑅𝑡 were used for

predicting 𝜇, and 𝐷𝑡 alone was used for estimating 𝜎 .

While we initially assumed an additive relationship of the tem-

poral factors for determining the selection distribution, we found

a strong interaction effect of 𝐷𝑡 × 𝑅𝑡 on 𝜇, with a large effect size

being identified from the data (𝜂2
𝐺

= 0.431). Therefore, we also

included another model that considered 𝐷𝑡 × 𝑅𝑡 interaction for 𝜇

prediction on top of the simple model, which we call the interact
model.

5.2.4 Model fitting. We fit the models with the fitlm function

available in MATLAB. The fitting was performed at the population-

level by averaging all participant data for each condition (24 con-

ditions in total). The regression function produced the following

results.

simple model

{
𝜇 = 0.300 − 0.489𝐷𝑡 + 0.147𝑅𝑡

𝜎 = −0.025 + 0.172𝐷𝑡

(8)

interact model

{
𝜇 = 0.063 − 0.014𝐷𝑡 + 2.046𝑅𝑡 − 3.798𝐷𝑡 · 𝑅𝑡
𝜎 = −0.025 + 0.172𝐷𝑡

(9)

hyp model

{
𝜇 = 0.278 − 0.489(𝐷𝑡 − 𝑅𝑡 ) + 0.145𝑊𝑡 − 0.342𝑅𝑡

𝜎 = −0.035 + 0.172(𝐷𝑡 − 𝑅𝑡 ) + 0.047𝑊𝑡 + 0.198𝑅𝑡

(10)

5.2.5 Model Performance. We evaluated model performance with

standard metrics including 𝑅2 (coefficient of determination), MAE
(mean absolute error), and two additional information criterion

measures (AIC and BIC). Information criteria such as AIC (Akaike’s

information criterion) and BIC (Bayesian information criterion)

evaluate themodel fit by applying a penalty to themodel complexity

(i.e., the number of parameters). Generally, a lower information

criterion value indicates a better model.

Table 2 summarizes the model performance of the three model

variants. Overall, all models achieved good fit for 𝜇 and 𝜎 estima-

tion (all 𝑅2 > 0.80). With the simple model as the baseline, the

results suggested after incorporating the interaction of 𝐷𝑡 × 𝑅𝑡 , as

in the interact model, the prediction performance of 𝜇 increased

significantly. Including𝑊𝑡 for 𝜇 estimation, as in the hyp model,
only provided limited benefits. For 𝜎 estimation, adding𝑊𝑡 and

𝑅𝑡 only offered marginal improvement of the fitting performance.

Both information criteria favored the interact model for 𝜇 estima-

tion and the hyp model for 𝜎 estimation. These models struck a

better balance between goodness-of-fit and parsimony (saving free

parameters).

Error rate estimates were calculated based on the predicted distri-

butionN(𝜇𝑠 , 𝜎2𝑠 ) with the three model variants. The interact model
led to the most accurate prediction, while the simple model and the

hyp model produced comparable performance.

5.2.6 Cross-Validation. We performed two cross-validation tests

to verify the generalizability of the three models. In the first analy-

sis, we obtained the model coefficients from 18 randomly chosen

experimental conditions (levels) and tested the model fitting on the

rest of 6 conditions for over 100 iterations. In the second analysis,

we obtained the model coefficients from 12 randomly chosen partic-

ipants and tested the model fitting on the remaining 4 participants

for over 100 iterations.

Table 3 summarizes the performance results. Overall, our results

demonstrated that all the models achieved accurate predictions in

the cross-validation analysis, which are also similar to the origi-

nal estimates. This indicates that the models could predict unseen
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Figure 6: Left: The averaged predictions (surface) and the observations (dot) of 𝜇 and 𝜎 using the hyp model. Right: Correlation
plots between predicted versus observed error rates regarding the interact model and the hyp model.

Table 2: Goodness-of-fit and information criteria comparison among the simple model, the interact model, and the hyp model.

Model Selection Mean (𝜇) Selection Std. (𝜎) Error Rate
𝑅2 𝑀𝐴𝐸 𝐴𝐼𝐶 𝐵𝐼𝐶 𝑅2 𝑀𝐴𝐸 𝐴𝐼𝐶 𝐵𝐼𝐶 𝑅2 𝑀𝐴𝐸

Simple model 0.81 0.017 -113.64 -110.11 0.90 0.003 -186.43 -184.08 0.77 8.20%

Interact model 0.95 0.008 -144.95 -140.23 0.90 0.003 -186.43 -184.08 0.94 4.57%

Hyp model 0.83 0.015 -115.01 -110.30 0.94 0.003 -193.46 -188.74 0.80 7.32%

Table 3: Cross-validation (LCO: leave-condition-out; LPO: leave-participant-out) performance results.

Model Selection Mean (𝜇) Selection Std. (𝜎) Error Rate
𝑅2 𝑀𝐴𝐸 𝑅2 𝑀𝐴𝐸 𝑅2 𝑀𝐴𝐸

L
C
O

Simple model 0.78 (0.17) 0.020 (0.005) 0.90 (0.10) 0.004 (0.001) 0.72 (0.20) 9.18% (3.39%)

Interact model 0.91 (0.10) 0.011 (0.003) 0.90 (0.10) 0.004 (0.001) 0.93 (0.06) 5.33% (1.70%)

Hyp model 0.78 (0.17) 0.019 (0.006) 0.91 (0.07) 0.004 (0.001) 0.73 (0.20) 8.64% (3.27%)

L
P
O

Simple model 0.79 (0.06) 0.018 (0.002) 0.81 (0.06) 0.006 (0.001) 0.73 (0.05) 9.58% (1.17%)

Interact model 0.92 (0.03) 0.012 (0.002) 0.81 (0.06) 0.006 (0.001) 0.89 (0.03) 6.42% (1.18%)

Hyp model 0.82 (0.05) 0.017 (0.002) 0.82 (0.05) 0.006 (0.001) 0.76 (0.05) 8.87% (1.08%)
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Figure 7: Simulated effect of temporal factors on error rate.

experimental conditions with high accuracy and could be safely

generalized to unseen populations.

5.2.7 Simulated effect of temporal factors on error rate. We further

explored how different levels of temporal factors typically influence

selection error rates through simulations. We used the interact
model for both 𝜇 and 𝜎 estimation and calculated the corresponding

predicted error rates, as it achieved the best performance. The

empirical coefficients we used were𝑊𝑡 = 0.1 or𝑊𝑡 = 0.2, 𝐷𝑡 ∈
[0.4, 0.6]with step = 0.01, 𝑅𝑡 ∈ [0, 0.2]with step = 0.01.

The simulation results are presented in Figure 7. When𝑊𝑡 = 0.1

and 𝐷𝑡 were relatively small (∼ [0.4, 0.5]), the increase of 𝑅𝑡 would
bring up the selection error rate significantly. In contrast, when 𝐷𝑡

was relatively large, the error rate increased steadily with 𝑅𝑡 . When

𝑊𝑡 = 0.2 and 𝐷𝑡 was ∼ [0.4, 0.45], the error rate went down when

𝑅𝑡 increased from 0 to 0.1 and went up again when 𝑅𝑡 increased

from 0.1 to 0.2. The error rate decreased steadily with 𝑅𝑡 when

𝐷𝑡 was ∼ [0.45, 0.53] and increased steadily with 𝑅𝑡 when 𝐷𝑡 was

∼ [0.53, 0.6].

5.3 Discussion
Our models produced promising results in both selection distribu-

tion and error rate estimation. The performance of the hyp model
was close to the simple model, which suggested that certain tem-

poral factors did not play a crucial role in 𝜇 and 𝜎 determination

under our task setting. The interact model further boosted the per-

formance, which indicated that it was helpful to consider the po-

tential interaction between 𝐷𝑡 and 𝑅𝑡 . Our leave-condition-out and

leave-participant-out cross-validation showed that our models were

robust to predict unseen experimental conditions and populations.

In the following, we examine closer the space and time relationship

and scrutinize the effect of the expected delay factor.
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5.3.1 Space and time relationship. We developed the hyp model
based on the hypotheses that the selection distribution is similarly

affected by corresponding variables in spatial (𝐷𝑠 ,𝑊𝑠 , and 𝑅𝑠 ) and

temporal (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) target selection tasks. The fitting results

of the model allow us to examine closer this potential space and

time relationship.

First, our results showed that user selection distributions in

temporal target selection is also Gaussian, as in the spatial target

selection. For determining 𝜇, the coefficient of temporal distance

(𝑎1) is smaller than 0, which suggests that increasing target distance

shifts the selection distribution forward in time. Similar evidence

can be found with head-based pointing in spatial target selection,

where a larger 𝐷𝑠 brought the selection distribution closer to the

starting point [50]. Meanwhile, the coefficient of temporal width

(𝑎2) is larger than 0, which indicates that a larger𝑊𝑡 “pushes back”

the center of the distribution. While we could not find a spatial

correspondence of this finding, our result seems to suggest that a

larger𝑊𝑡 enabled a larger possible space for selection. Additionally,

we noticed that when users are selecting a zero width object𝑊𝑡 = 0

with zero delay (𝑅𝑡 = 0) at zero distance away (𝐷𝑡 − 𝑅𝑡 = 0),

𝜇 = 𝑎0 = 0.278s which is close to typical human reaction time

(∼0.25s). The value probably encodes the effects caused by the

input device and the internal human motor control system.

For determining 𝜎 , temporal distance and temporal width are

positively correlated to the standard deviation of the distribution (as

𝑏1 > 0 and 𝑏2 > 0). This matches previous findings in spatial target

selection, where the standard variance of the selection distribution

can increase with 𝐷𝑠 and𝑊𝑠 by a constant factor [14, 50].

5.3.2 The effect of expected delay. We first assumed a simple linear

effect of expected delay (𝑅𝑡 ) on both 𝜇 and 𝜎 , as there was no

existing research on the corresponding spatial factor. However, we

found a significant interaction of 𝐷𝑡 × 𝑅𝑡 on 𝜇, which complicates

the impact of 𝑅𝑡 on the distribution.

Overall, because of the positive coefficients of 𝑅𝑡 for both 𝜇 (co-

efficient: 0.147) and 𝜎 (coefficient: 0.198) in the hyp model (which
only considers main effects), increasing 𝑅𝑡 generally pushes back

the distribution in time and enlarges the variance of the distribu-

tion. However, the effect of 𝑅𝑡 on 𝜇 depends on 𝐷𝑡 according to

the interact model—the coefficient of 𝑅𝑡 becomes 2.046 − 3.798𝐷𝑡 .

When 𝐷𝑡 is small (< 0.54), 𝑅𝑡 delays the distribution. This might

be because when 𝐷𝑡 is small, the accumulated evidence (within

[𝐷𝑡 −𝑅𝑡 , 𝐷𝑡 −𝑅𝑡 +𝑊𝑡 ]) for users to determine a proper input time is

limited while they still need more time to average out uncorrelated

noises [6]. This can induce a large number of errors in selecting

small targets (i.e.,𝑊𝑡 is small). When 𝐷𝑡 is large (≥ 0.54), however,

𝑅𝑡 moves the distribution earlier in time. It could mean that when

𝐷𝑡 is large, users have more time to “wait” for the selection (as least

𝐷𝑡 − 𝑅𝑡 ) and might trigger the input slightly earlier (as they do not

want to wait any longer). This is a possible explanation for why

selection errors increase when 𝐷𝑡 is large.

6 STUDY 2: GENERALIZATION
In this study, our goal was to assess the generalizability of our

models and conclusions. Specifically, we were interested in verify-

ing that we can generalize our results to (1) more complex visual

encoding of temporal factors of 𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 , (2) larger parameter

ranges of temporal factors, and (3) less controlled experiment envi-

ronments other than immersive VR. To resolve these questions, we

built two web-based game applications on temporal target selection

(Space Shooter and Jump! Jump!) and used them in an online study

on MTurk.

6.1 Space Shooter
Space Shooter is a simplified space shooter game in WebGL (Fig-

ure 8 left). The goal is to shoot down the enemy spaceship, which

moves horizontally at a fixed speed, with the laser from the player’s

spaceship. Players cannot control the movement of their spaceship

but shoot the laser at a specific time by pressing the spacebar. An

explosion animation of the enemy spaceship is played if the laser

hits it successfully.

We fixed the position of the player’s spaceship at the center of

the screen and its initial horizontal distance to the enemy spaceship

as 6 units. We also set the movement speed of the laser to 80 unit/s.

We thenmodified the following three in-game variables to construct

different game difficulties.

• Target Speed (horizontal movement speed of the enemy

spaceship): 6 units/s, 8 units/s, and 12 units/s

• Target Size (size of the enemy spaceship): 1 unit, 1.5 units

• Height (vertical distance between the enemy’s and the

player’s spaceship): 8 units, 12 units, and 16 units

These variables resulted in 6 {𝐷𝑡 , 𝑊𝑡 } combinations ({0.500s,

0.083s}, {0.500s, 0.125s}, {0.750s, 0.125s}, {0.750s, 0.188s}, {1.000s,

0.167s}, {1.000s, 0.250s}) and 3 𝑅𝑡 values (0.100s, 0.150s, 0.200s), lead-

ing to 18 experimental conditions in total. The parameter ranges

were 𝐷𝑡 ∈ [0.5𝑠, 1.0𝑠],𝑊𝑡 ∈ [0.083𝑠, 0.25𝑠], and 𝑅𝑡 ∈ [0.1𝑠, 0.2𝑠].
Notably, the values of 𝐷𝑡 were slightly higher than in the first

controlled study (𝐷𝑡 ∈ [0.4𝑠, 0.6𝑠]). We thought it was likely that

participants’ response time would be longer for a less-controlled

environment [22, 35], so that we lowered the difficulty a bit to avoid

receiving too many error trials. The visual encoding of the temporal

factors was more complicated with realistic textures and complex

shapes.

6.2 Jump! Jump!
Jump! Jump! is a WebGL game that requires players to control the

character to get the gold coin across the river by jumping onto a

moving block (Figure 8 right). It mimics a game scenario in Moss

where the players jump the character onto a waterwheel within a

limited time window (Figure 1 middle). Players control the jump

of the character by pressing the spacebar on their keyboard. An

animation of the character getting the gold coin is played if the

character passes the river successfully through the moving block,

otherwise, the character will drop into the water.

We fixed the starting position of themoving block and the charac-

ter with an initial distance of 8 units.We then adjusted the following

three in-game variables to construct different game difficulties.

• Block Speed (movement speed of the block along the river):

6 units/s, 8 units/s

• Block Width (width of the moving block): 1.6 units, 2.4

units

• Jump Time (time it takes the character to jump onto the

block): 0.4s, 0.6s, and 0.8s.
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Figure 8: Demonstration of the two game applications in Study 2. Left: Space Shooter, Right: Jump! Jump!

These variables led to 4 {𝐷𝑡 ,𝑊𝑡 } combinations ({1.000s, 0.200s},

{1.000s, 0.300s}, {1.333s, 0.267s}, {1.333s, 0.400s}) and 3 𝑅𝑡 values

(which is the same as Jump Time 0.400s, 0.600s, and 0.800s), leading

to 12 experimental conditions in total. Notably, the parameters were

set to be larger than the previous settings to explore the model

generalizability in a wider parameter range (𝐷𝑡 ∈ [1.0𝑠, 1.33𝑠],
𝑊𝑡 ∈ [0.2𝑠, 0.4𝑠], 𝑅𝑡 ∈ [0.4𝑠, 0.8𝑠]). Meanwhile, we still ensured

that 𝐷𝑡 −𝑅𝑡 +𝑊𝑡 was larger than human reaction time (∼ 0.3s). Our

pilot study suggested that some conditions could be easier than the

previous scenarios, probably due to the larger𝑊𝑡 . The character’s

jump also represented non-linear movements (height calculated

based on sine waves), which allowed us to assess more complex

visual encoding of the temporal factors.

6.3 Method
We recruited participants from MTurk to perform the tasks. This

allowed us to test our conclusions in less controlled experiment

environments than immersive VR.

6.3.1 Participants, apparatus, and materials. We received valid re-

sponses from 48 MTurk workers (24 for each scenario). The sample

consists of 20 women and 28 men with an average age of 38.3 (SD

= 10.5). The game applications were developed with Unity3D and

deployed through WebGL. Participants performed the experiment

with their own PC.

6.3.2 Procedure. The average time for completing the whole study

was around 60 minutes. After accepting the task on MTurk, they

gave their informed consent, read the instructions of the experiment,

filled in their demographic information, and were then directed to

the web application.

Similarly to the first study, participants had a warm-up session

to get familiar with 𝑅𝑡—they practiced for at least 5 trials and could

practice more for as long as they liked. The first 10 starting trials of

each block were randomly generated and discarded for participants

to (re-)adapt to the formal experiment. The formal session lasted

approximately 20 minutes for both applications. Breaks were given

around every 5 minutes in Space Shooter, and when switching to

a new character in Jump! Jump! (around 6 minutes). They were

instructed to perform the task as accurately as possible and were

informed that bonus payment would be given to highly accurate

performers. The interval between the two trials was randomized

within [1.5s, 2s], and the applications would replay a trial if partic-

ipants did not respond. After completing the experiment, partici-

pants submitted the redemption code to the MTurk form, and we

compensated them with $15 after verifying their data.

6.4 Results - Space Shooter
6.4.1 Pre-processing and normality tests. We collected 8640 data

points (24 participants × 6 {𝐷𝑡 ,𝑊𝑡 } combinations × 3 𝑅𝑡 × 20 repeti-

tions) in the experiment. First, we removed the data of 3 participants

whose overall error rate was abnormally high (> 70%). Second, we

removed 93 outliers (1.08%) where user input time was outside of

𝑚𝑒𝑎𝑛±3𝑠𝑡𝑑. in each condition. We were left with 7467 trials of data

after the pre-processing. Among the 432 distributions, 78.0% of them

were statistically normally distributed as shown by Shapiro-Wilk

tests.

6.4.2 Model fitting and performance. We fit the models with the

fitlm function as in the first study. Table 4 summarizes the per-

formance results, and the following equations demonstrate model

fitting results.

simple model

{
𝜇 = 0.116 − 0.094𝐷𝑡 + 0.227𝑅𝑡

𝜎 = 0.038 + 0.066𝐷𝑡

(11)

interact model

{
𝜇 = −0.076 + 0.161𝐷𝑡 + 1.505𝑅𝑡 − 1.704𝐷𝑡 · 𝑅𝑡
𝜎 = 0.038 + 0.066𝐷𝑡

(12)

hyp model

{
𝜇 = 0.116 − 0.194(𝐷𝑡 − 𝑅𝑡 ) + 0.480𝑊𝑡 + 0.033𝑅𝑡

𝜎 = −0.002 + 0.070(𝐷𝑡 − 𝑅𝑡 ) − 0.017𝑊𝑡 + 0.333𝑅𝑡

(13)

Overall, all the existing models could not properly explain the

variations in 𝜇 (highest𝑅2 = 0.53). Incorporating𝐷𝑡×𝑅𝑡 interaction
as in the interact model was not helpful and produced worse results
when compared to the hyp model. For 𝜎 , the hyp model achieved
reasonable estimation with 𝑅2 = 0.71 and lower information cri-

terion measures, which indicated that adjusting 𝑅𝑡 and𝑊𝑡 could

also affect the variance of the selection distribution, as compared to

the other two models which only considered 𝐷𝑡 when predicting 𝜎 .

While the 𝑅2 values for 𝜇 and 𝜎 estimates were relatively low, the

absolute prediction error (MAE) of the models was generally small.

This resulted in relatively accurate estimates in user selection error

rate (e.g., the hyp model achieved 𝑅2 = 0.90 and𝑀𝐴𝐸 = 6.88%).

6.4.3 Further analysis on 𝜇 fitting results. The 𝑅2 results of 𝜇 for

all existing models were unexpectedly low (highest 𝑅2 = 0.53),
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Table 4: Goodness-of-fit and information criteria comparison among the models for the two scenarios.

Scenario Model Selection Mean (𝜇) Selection Std. (𝜎) Error Rate
𝑅2 𝑀𝐴𝐸 𝐴𝐼𝐶 𝐵𝐼𝐶 𝑅2 𝑀𝐴𝐸 𝐴𝐼𝐶 𝐵𝐼𝐶 𝑅2 𝑀𝐴𝐸

Space

Shooter

Simple model 0.34 0.024 -70.13 -67.46 0.43 0.012 -94.96 -93.18 0.78 9.16%

Interact model 0.50 0.021 -72.99 -69.43 0.43 0.012 -94.96 -93.18 0.89 7.69%

Hyp model 0.53 0.021 -74.14 -70.58 0.71 0.009 -102.89 -99.33 0.90 6.88%

LfDistance model 0.97 0.006 -119.47 -115.02 0.71 0.009 -102.89 -99.33 0.96 5.40%

Jump!

Jump!

Simple model 0.71 0.033 -38.81 -37.35 0.64 0.011 -61.29 -60.32 0.52 11.06%

Interact model 0.96 0.013 -60.40 -58.46 0.64 0.011 -61.29 -60.32 0.92 4.59%

Hyp model 0.74 0.031 -38.16 -36.22 0.79 0.010 -63.86 -61.92 0.69 8.49%

which motivated us to explore the potential issue. One difference

between this scenario and the previous controlled experiment was

that 𝐷𝑡 was extended from [0.4𝑠, 0.6𝑠] to [0.5𝑠, 1.0𝑠], because we
wanted to make the online experiment “easier” as participants

might have longer response time due to the lack of rigorous, lab-

based experimental control. However, our analysis showed that the

impact of 𝐷𝑡 − 𝑅𝑡 (i.e., waiting time before an user input) on 𝜇 was

no longer linear as in the hyp model: 𝜇 decreased with𝐷𝑡 −𝑅𝑡 when
𝐷𝑡 − 𝑅𝑡 < 0.55𝑠 , and stayed more or less stable when 𝐷𝑡 − 𝑅𝑡 >

0.55𝑠 . We hypothesized that the impact of the (𝐷𝑡 − 𝑅𝑡 ) factor on 𝜇

saturated after passing a certain threshold (i.e., when the waiting

time was long enough, it would no longer shift the center of the user

input distribution). To model this effect, we used a logistic function

𝑓 (𝐷𝑡 − 𝑅𝑡 ) = 𝑎1/(1 + 𝑒−𝑘 (𝐷𝑡−𝑅𝑡 ) ) to transform the original linear

term of 𝑓 (𝐷𝑡 − 𝑅𝑡 ) = 𝑎1 (𝐷𝑡 − 𝑅𝑡 ) in the hyp model. The added

coefficient 𝑘 represents the steepness of the logistic function. We fit

the model with fitnlm in Matlab and derived the following model

(LfDistance model). The variation of 𝜇 was better captured by this

model (𝑅2 = 0.97). The corresponding 𝐴𝐼𝐶 and 𝐵𝐼𝐶 values were

also much lower, which illustrated the benefit of incorporating the

logistic function and the extra coefficient 𝑘 .

LfDistance model{
𝜇 = −0.02 − 2.198/(1 + 𝑒8.896(𝐷𝑡−𝑅𝑡 ) ) + 0.484𝑊𝑡 − 0.080𝑅𝑡

𝜎 = −0.002 + 0.070(𝐷𝑡 − 𝑅𝑡 ) − 0.017𝑊𝑡 + 0.333𝑅𝑡

(14)

6.5 Results - Jump! Jump!
6.5.1 Pre-processing and normality tests. We collected 5760 data

points (24 participants × 4 {𝐷𝑡 ,𝑊𝑡 } combinations × 3 𝑅𝑡 × 20 repe-

titions) in the experiment. We removed the data of 3 participants

whose overall error rate was > 70% and 42 outliers (0.73%). We

were left with 4998 trials of data after the pre-processing. Shapiro-

Wilk tests showed that 81.3% were statistically normally distributed

among the 288 distributions.

6.5.2 Model fitting and performance. After fitting the models with

fitlm, we summarize the performance results in Table 4 and the

model fitting results with the following equations.

simple model

{
𝜇 = 0.530 − 0.346𝐷𝑡 + 0.033𝑅𝑡

𝜎 = −0.041 + 0.127𝐷𝑡

(15)

interact model

{
𝜇 = −0.363 + 0.419𝐷𝑡 + 1.520𝑅𝑡 − 1.275𝐷𝑡 · 𝑅𝑡
𝜎 = −0.041 + 0.127𝐷𝑡

(16)

hyp model

{
𝜇 = 0.530 − 0.398(𝐷𝑡 − 𝑅𝑡 ) + 0.207𝑊𝑡 − 0.365𝑅𝑡

𝜎 = −0.079 + 0.121(𝐷𝑡 − 𝑅𝑡 ) + 0.025𝑊𝑡 + 0.183𝑅𝑡

(17)

Overall, the interact model offered the best performance in 𝜇

(𝑅2 = 0.96 and 0.013) and error rate estimates (𝑅2 = 0.92 and

𝑀𝐴𝐸 = 4.59%). While the hyp model produced the highest 𝑅2 (0.79)
for 𝜎 estimation, the𝑀𝐴𝐸, 𝐴𝐼𝐶 , and 𝐵𝐼𝐶 values suggested that the

additional parameters (𝑊𝑡 and 𝑅𝑡 ) may not be major sources that

altered the distribution variance. Moreover, 𝐴𝐼𝐶 and 𝐵𝐼𝐶 values

were lower for the simple model as compared to the hyp model,
indicating the additional𝑊𝑡 factor might not be useful in this case.

Noticeably, the coefficients of the hyp model in this scenario were

rather close to the ones in the first study.

6.6 Discussion
We explored the generalizability of our models in two interactive

game applications (Space Shooter and Jump! Jump!) through an

online study. In Space Shooter, although the models produced rea-

sonably accurate estimates for error rates (e.g., hyp model achieved
𝑅2 = 0.90 and𝑀𝐴𝐸 = 6.88%), all existing models failed to explain

the variations in 𝜇 (highest 𝑅2 = 0.53). A logistic function-based

model variation was found to be more accurate (𝑅2 = 0.97) and lead

to lower (better) information criterion measures. In Jump! Jump!,

the interact model was found to be the most accurate on error rate

prediction (𝑅2 = 0.92 and𝑀𝐴𝐸 = 4.59%). Overall, the study results

demonstrated that our models can still be helpful for conditions

with more complex visual encoding, extended parameter ranges,

and less-controlled environments. In the following, we discuss why

we may need a logistic-like function to transform the impact of

temporal factors on 𝜇 and the feasibility of generalizing the models

and conclusions to larger 𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 values.

6.6.1 The logistic-like impact of temporal factors on user selec-
tion distributions. In Space Shooter, we replaced the linear term

of 𝑎1 (𝐷𝑡 − 𝑅𝑡 ) with a logistic function-transformed term 𝑎1/(1 +
𝑒−𝑘 (𝐷𝑡−𝑅𝑡 ) ). The logistic function was used to describe the effect

of 𝐷𝑡 − 𝑅𝑡 (i.e., waiting time before a user input) becoming sat-

urated on 𝜇. Intuitively, while larger 𝐷𝑡 − 𝑅𝑡 tended to shift the

center of the distribution closer to the edge of the target, it would
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not deviate the distribution center away from the target boundary

as if modeled linearly. In other words, increasing 𝐷𝑡 − 𝑅𝑡 would

have a smaller and smaller effect on the distribution center as the

center approaches the target edge. The fitting results (𝑅2 = 0.97

and 𝑀𝐴𝐸 = 0.006) demonstrated the necessity of integrating the

logistic term.

An analogy can be found in spatial target selection: when facing

a relatively easy task (large 𝐷𝑠 and𝑊𝑠 ), users will shift their dis-

tributions more towards the edge of the object [14, 50]. However,

continuously increasing 𝐷𝑠 and𝑊𝑠 will not move the distribution

center infinitely far away from the target center, and the impact of

𝐷𝑠 and𝑊𝑠 will get smaller as the distribution center is very close

to the target edge [36].

As compared to Study 1, the additional logistic-like effect was

likely caused by the fact that we prolonged the range of 𝐷𝑡 from

[0.4s, 0.6s] to [0.5s, 1.0s] to compensate for the potential longer

response time in a less-controlled experiment environment, which

resulted in an easier task condition when 𝐷𝑡 was long. This means

that logistic terms could be better suited for all of the temporal

factors (𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 ) regarding their effects on the distribution

(both 𝜇 and 𝜎). However, we did not introduce the logistic terms to

every temporal factor because it might bring too many additional

coefficients. We expected that linear terms would have enough

fitting power when a task condition was not too easy.

6.6.2 The impact of larger 𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 . We cross-compared our

results from Jump! Jump! and the first study, and identified several

similarities between them despite having extended the range of

𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 . All the coefficients of the hyp model in these two

studies were rather close even though the experimental settings

were completely different. Moreover, we found, as in the first study,

𝑊𝑡 had a marginal impact on the distribution center, and both𝑊𝑡

and 𝑅𝑡 were not the main sources that changed the distribution

variance. However, the 𝑅2 values were not as high as in the first

study for the simple model and the hyp model. We identified two

potential reasons. First, the data were noisier in a less-controlled

study. Second, the impact of 𝐷𝑡 ,𝑊𝑡 , and 𝑅𝑡 could be saturating

with larger values as discussed in the last section.

The interact model achieved high performance in predicting

the center of the distribution (𝑅2 = 0.96 and 𝑀𝐴𝐸 = 0.013) and

the selection error rates (𝑅2 = 0.92 and 𝑀𝐴𝐸 = 4.59%). Under

this model, the coefficient of 𝑅𝑡 became (2.046 − 3.798𝐷𝑡 ), which
suggested 𝑅𝑡 delayed the distribution when 𝐷𝑡 < 1.192 and pushed

the distribution forward in time when𝐷𝑡 > 1.192. This threshold of

𝐷𝑡 could be dependent on [𝐷𝑡 −𝑅𝑡 , 𝐷𝑡 −𝑅𝑡 +𝑊𝑡 ] (i.e., input interval
for a successful selection) as discussed in the first study. In Jump!

Jump!, the averaged input interval was [0.4, 0.7] when 𝑅𝑡 pushed

the distribution backward and was [0.733, 1.033] when 𝑅𝑡 pushed

the distribution forward. These intervals were slightly larger than

the averaged intervals in Study 1 ([0.325, 0.475] and [0.475, 0.625]),
which could be due to the differences in experimental settings.

7 IMPLICATIONS AND APPLICATIONS
Through the course of two user studies, we gathered a better under-

standing of how temporal factors including “distance” (𝐷𝑡 ), “width”

(𝑊𝑡 ), and “delay” (𝑅𝑡 ) may influence user selection distribution and

selection error rates. We envision our models and conclusions to

apply to various interactive applications that involve the selection

of temporal targets.

Our models can enable automated playtesting [25] in various

games that contain temporal target selection (e.g., shooting a mov-

ing target, jumping onto a moving block, hitting a minion within

a fixed time window). For example, by estimating the user selec-

tion distribution and the selection error rate, a game designer no

longer needs to rely on intuition to set the game difficulty but can

determine the end-effect of adjusting game variables related to 𝐷𝑡 ,

𝑊𝑡 , and 𝑅𝑡 computationally. Previous research suggested that pre-

dicting game difficulty is an uneasy task for game designers [16].

With a generalizable model, the designer can better predict how

users will behave when adjusting the parameters to unseen condi-

tions without costly user tests. Further, the parameters can even

be adjusted adaptively in-game with our models for players hav-

ing different skills, enabling more personalized game experiences.

For example, the same game can be adjusted, based on the subtle

changes in game parameters like in Study 2, to be more challenging

for expert players while easier for novice players. According to

the flow theory [11], balancing the level of player skill and game

challenge leads to better game experiences. Based on our studies,

we derived the following implications for modeling user selection

behavior in temporal target selection.

I1. A good start of modeling a new temporal target selection

scenario is to use the model based on our initial hypotheses of

a mapping between temporal and spatial target selection (i.e.,

the hyp model). Its prediction performance in terms of user

selection distribution and selection error rate was relatively

robust and its prediction error (i.e., MAE) was acceptable even
compared to a more complex model.

I2. The hyp model may be simplified to a simpler model variant

that only considers a subset of temporal factors that have a

significant impact on the selection distribution (i.e., the simple
model). According to our results, 𝐷𝑡 seemed to be the primary

source that altered the center and the variance of the selection

distribution. Only considering a subset of temporal factors

may achieve reasonable even comparable performance as a

more complicated model.

I3. Consider the potential interaction effect between 𝐷𝑡 and 𝑅𝑡 ,

as in the interact model. Our results suggested that when the

input interval of a successful selection ([𝐷𝑡 −𝑅𝑡 , 𝐷𝑡 −𝑅𝑡 +𝑊𝑡 ])
allowed only a short reaction time (i.e., the bounding values

were small), larger 𝑅𝑡 would delay the selection distribution.

On the other hand, when the reaction time was relatively long

(i.e., bounding values were large), larger 𝑅𝑡 could push the

selection distribution forward in time. Leveraging the interac-

tion term (𝐷𝑡 × 𝑅𝑡 ) to describe this user behavior can lead to

higher prediction accuracy.

I4. Consider the potential saturation effect of temporal factors, as

in the LfDistance model. Our results showed that the impact

of a temporal factor on selection distribution was not always

linear—its influence may become saturated when the value

was large. For example, if the temporal distance was too long,

it would not always drag the distribution center linearly but

have a smaller and smaller effect on it as the center approaches

the target edge. Modeling the saturated term with a logistic
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function can boost prediction performance when some task

conditions seem to be a bit easy.

Additionally, our models and conclusions may benefit users of

temporal target selection applications. By understating how tempo-

ral factors typically influence selection error rates as predicted by

the model, a player can better counter-play challenging game sce-

narios. For example, based on our findings that a longer expected

delay could push the distribution forward in time considerably

when the temporal distance was large, we know that players typ-

ically rush their input when hitting a slowly approaching target

with a slow bullet. In such cases, a player should try to execute the

selection input a bit late to improve accuracy.

8 CONCLUSION AND FUTUREWORK
We have presented models to predict user selection distribution

and error rate in temporal target selection tasks. We started the

modeling process with a simple analogy between temporal and spa-

tial target selection: we hypothesized that users react to temporal

factors, including distance, width, and delay as how they treat the

corresponding variables in spatial target selection. Through the

course of two user studies (one controlled experiment in VR and one

MTurk-based online experiment), we found similarities between

spatial and temporal target selection. For example, increasing tem-

poral distance (𝐷𝑡 ) or width (𝑊𝑡 ) shifted the center of the selection

distribution and increased the distribution variance in a similar

way as increasing the spatial distance (𝐷𝑠 ) or width (𝑊𝑠 ) do in a

spatial task. Moreover, the impact of a factor may become saturated

after crossing a threshold in both domains. While less explored in

spatial target selection, we also discovered an interplay between

the expected delay (𝑅𝑡 ) and 𝐷𝑡 on the resulting distribution center.

We envision our models and conclusions will help designers

and users when encountering relevant scenarios. Future research

can extend our model to combine it with other spatial models to

predict interaction tasks involving both spatial and temporal tar-

get selection. Future work can also explore more complex cursor

and target movements (e.g., acceleration≠0 like an enemy target

switches from walking to running). While our tasks did not limit

the types of target movements, we tested our models mostly in

scenarios with constant speeds of cursors and targets (expect for

Jump!Jump!). Less-predictable movements may affect a user’s esti-

mation of temporal factors. Additionally, while our research is more

empirically-driven, we hope our discussions and interpretations

could inspire future theories that explain target selection behavior.

OPEN-SOURCED DATASETS
We open-sourced our datasets on https://github.com/Davin-Yu/

TemporalSelection-CHI2023 for replication and future research.
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