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ABSTRACT

Object selection andmanipulation are fundamental to interacting with objects in Virtual Reality
(VR) systems. Existing object selection and manipulation techniques in VR are primarily based
on mid-air interaction with virtual hands or ray pointers. They are simple and intuitive but are
often criticized in the literature for being imprecise, inefficient, and cumbersome. Specifically,
these techniques are insufficient for complex VR interaction scenarios that contain small,
distant, and occluded targets and require efficient, precise, versatile, and prolonged operations.
This thesis presents occlusion visualization techniques, integration strategies of complementary
modalities of gaze and body surfaces, and predictive systems based on target prediction models
to enhance virtual hands and ray pointers for complex VR interactions. Findings from a series
of user studies demonstrated that the proposed solutions could select and manipulate small,
distant, and occluded targets in an effective, efficient, comfortable, and satisfying manner.
Overall, our technical solutions and findings can inform the future design of more usable and
useful 3D user interfaces for VR systems.
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PREFACE

This thesis is submitted to fulfill the requirements for the degree of Doctor of Philosophy at
The University of Melbourne. The research was conducted during my study at The University
of Melbourne under the supervision of A/Prof. Jorge Goncalves, A/Prof. Eduardo Velloso, and
Dr. Tilman Dingler.
The thesis includes four peer-reviewed articles (Article I-IV as listed below) following The
University of Melbourne guidelines for a thesis with publication1. Among the four articles,
Articles I and III were completed fully within The University of Melbourne, Article II was
completed in collaboration with X-CHI Lab at Xi’an Jiaotong-Liverpool University, and Article
IV was completed during my remote internship at Reality Labs Research, Meta Inc.
While several collaborators have contributed to the articles, I declare that I am the primary
author and have more than 50% contributions to each of the publications. More specifically, I
proposed the research questions, designed the solutions, planned the study design, developed
the VR software, (co-)conducted the user studies, and performed the data analysis. Furthermore,
I drafted the full research articles and subsequently revised them until they got published.
I am grateful for the contributions of the listed co-authors, who provided valuable feedback on
the works, helped conduct the user studies, and contributed to preparing the research articles.
Hence, I use the term “we” throughout this thesis to recognize my co-authors’ contributions.
• Article I: Difeng Yu, Qiushi Zhou, Joshua Newn, Tilman Dingler, Eduardo Velloso, and
Jorge Goncalves. "Fully-Occluded Target Selection in Virtual Reality." IEEE transactions on
visualization and computer graphics 26, no. 12 (2020): 3402-3413. https://doi.org/10.1109/
TVCG.2020.3023606

• Article II: Difeng Yu, Xueshi Lu, Rongkai Shi, Hai-Ning Liang, Tilman Dingler, Eduardo
Velloso, and Jorge Goncalves. "Gaze-Supported 3D Object Manipulation in Virtual Reality."
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-13.
2021. https://doi.org/10.1145/3411764.3445343

• Article III: Difeng Yu, Qiushi Zhou, Tilman Dingler, Eduardo Velloso, and Jorge Goncalves.
"Blending On-Body and Mid-Air Interaction in Virtual Reality." In 2022 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR), pp. 637-646. IEEE, 2022. https://doi.
org/10.1109/ISMAR55827.2022.00081

1The University of Melbourne. 2009. Graduate Research Training Policy (MPF1321). Retrieved from https://policy.
unimelb.edu.au/MPF1321

v

https://doi.org/10.1109/TVCG.2020.3023606
https://doi.org/10.1109/TVCG.2020.3023606
https://doi.org/10.1145/3411764.3445343
https://doi.org/10.1109/ISMAR55827.2022.00081
https://doi.org/10.1109/ISMAR55827.2022.00081
https://policy.unimelb.edu.au/MPF1321
https://policy.unimelb.edu.au/MPF1321


• Article IV: Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar
Gupta. "Optimizing the Timing of Intelligent Suggestion in Virtual Reality." In Proceedings of
the 35th Annual ACM Symposium on User Interface Software and Technology, pp. 1-20. 2022.
https://doi.org/10.1145/3526113.3545632
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Chapter 1

INTRODUCTION

Object selection and manipulation are indispensable for interacting with virtual objects in
Virtual Reality (VR) headsets [13, 21]. Users perform selections to identify the target of interest
and execute manipulations, including translation, rotation, and scaling, to further transform the
target into a desired configuration. Compared to desktop- or tablet-based systems, interacting
with VR headsets fundamentally differs because users are fully immersed in a 3D digital
space with co-located virtual objects. They can observe a target from different angles, touch,
grab, point, pull, push, and even squeeze the object. Because of this significant difference in
experiencing the 3D world, VR technology requires unprecedented, new ways of interaction.

Fig. 1. Left: A user is grabbing a blue cube through Virtual Hand in Hand Physics Lab. Right: A user is
pointing at a virtual goggle through Raycasting in Virtual Virtual Reality.

Historically, there are two seminal selection and manipulation techniques that both leverage
mid-air gestures and movements for input: Virtual Hand and Raycasting [5, 83] (see Figure 1).
Virtual Hand creates a virtual replica of users’ physical hands in the VR space, and the user
can use the virtual hands to grab and manipulate virtual objects. Raycasting emanates a virtual
ray into the environment from (typically) the physical hand position, and the user can control
the ray to point and interact with objects. These techniques are simple, straightforward, and
intuitive for 3D interaction and have been employed in many off-the-shelf applications.
However, the literature has also pointed out known usability issues with these techniques.
Performing actions in 3D space is inherently difficult [62, 64]. Simple mid-air interaction
techniques such as Virtual Hand and Raycasting can be imprecise and inefficient in completing
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Chapter 1 - INTRODUCTION

a 3D interaction task [5, 83], especially when users cannot feel the physical properties (e.g.,
shapes, textures, weights) of virtual objects. Furthermore, the Heisenberg effect—where inputs
such as a button click could disturb the position of the input device and result in a different
selection point [189]—also plague these techniques. Additionally, it can be cumbersome to
use Virtual Hand and Raycasting for a prolonged period because of the gorilla arm effect—a
feeling of heaviness in the arm [16, 63].
Meanwhile, VR interaction scenarios can be complex because of the added depth dimension.
For example, VR application scenarios such as immersive data analytics [101], medical train-
ing [145], and interior design [75] may involve complicated visualizations (see Figure 2 left).
Therefore, targeted objects of interest can be small, distant, off-screen, and even fully occluded.
It is difficult to acquire and manipulate such targets with Virtual Hand and Raycasting. In
other application scenarios like 3D modelling [77], the task may require interaction techniques
that are efficient, precise, versatile, and comfortable for prolonged usage (see Figure 2 right).
While Virtual Hand and Raycasting may work fine for generic interactions with unoccluded,
properly-sized buttons, menus, and virtual objects, they may not be sufficient for these more
complex applications because of the aforementioned usability issues.

Fig. 2. Left: An immersive data analytics scenario in Virtualitics that involves selecting andmanipulating
small, distant, and occluded targets. Right: A 3D modeling scenario in Gravity Sketch that requires
precise, versatile, and prolonged operations in VR.

1.1 ResearchQuestion
To summarize what we have discussed so far: Virtual Hand and Raycasting, which are the
most prevalent mid-air techniques for object selection and manipulation in VR, have limited
capability in dealing with more complex application scenarios that contain small, distant,
and occluded targets and require efficient, precise, versatile, and prolonged operations. This
challenge motivated the following overarching research question (RQ) in this thesis.
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RQ. How to enhance Virtual Hand and Raycasting for target selection and manipulation
in complex VR interaction scenarios?

To further specify the RQ, it is essential to clarify the meaning of “complex VR interaction
scenarios” and “enhance” within the scope of this thesis.

1.1.1 Complex VR Interaction Scenarios
As briefly mentioned in the previous section, the “complexity” of VR interaction scenarios
comes from two viewpoints: environment and task.
• Environment: a complex environment may contain (1) small targets, typically smaller than
1◦ in angular size, to be deemed as challenging for selection [194], (2) distant targets, which
are outside of the arm-reach distance, and (3) occluded targets, which are partially- or
fully-obscured by other distractors in an environment.

• Task: a complex task may require (1) precise and efficient input in completing the assignment,
(2) low-fatigue, comfortable, and satisfying user experience in a prolonged interaction
scenario, (3) versatile input that can support a multitude of functional requirements. These
task requirements are closely connected to the measurements that will be introduced next.

1.1.2 Measurements
To “enhance” Virtual Hand and Raycasting in fulfilling the task requirements in a complex
VR interaction scenario, we aim to optimize the proposed solutions in the following five
measurements (namely the 5Es). We modify and extend ISO-9241 [71], the international
standard of usability measures, and the established usability metrics in human-computer
interaction (HCI) [66] to a more granular, domain-specific version.
• Effectiveness. The accuracy with which users achieve specific goals. Common metrics include
error rate, the percentage of incorrect completions in the tested set of trials, and error
distance, the distance offset between target and user-completed configurations.

• Efficiency. The time used in relation to the results achieved. Example metrics include selection
time, the time taken to complete a successful target selection, and manipulation time, the
time taken to manipulate a target into a desired configuration.

• Ergonomics. The physical andmental workload associatedwith results achieved. The physical
workload can be assessed through, for example, hand/arm movements and questionnaires
like Borg-CR10 [15]. The mental workload is normally quantified through NASA-TLX [58].

• Experience. Users’ feelings and satisfaction when performing tasks with the evaluated
solutions. These data are normally collected from questionnaires such as UEQ-S [150].
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Chapter 1 - INTRODUCTION

Table 1. The solutions provided in this thesis are promising in small, distant, and occluded target
selection and manipulation. They have been demonstrated to improve the existing solutions in the
measurements of the 5Es.

Article I Article II Article III Article IV
Occluded Visualization Gaze Support On-Body Support Intelligent Suggestion

En
v.

Small ✓ ✓ ✓ ✓
Distant ✓ ✓ ✓ ✓
Occluded ✓ ✓

Ta
sk

Effectiveness ✓ ✓ ✓
Efficiency ✓ ✓ ✓ ✓
Ergonomics ✓ ✓
Experience ✓ ✓ ✓ ✓
Expressivity ✓ ✓ ✓ ✓

• Expressivity. The solution’s ability to be applied for a wide range of interactive applications
or new use cases. Expressivity is typically demonstrated through sample applications.

1.2 Contribution
In this thesis, we contribute solutions to address RQ. More specifically, we enhance Virtual
Hand and Raycasting for target selection and manipulation in complex VR interaction scenarios
by incorporating occlusion visualizations, additional input/output modalities, and computa-
tional models (see Table 1). All solutions consist of interaction techniques or frameworks that
have been proven to help handle complex VR interaction scenarios, with additional findings
from user studies to guide interface designs.
Our solutions are distributed in the four research articles (Article I-IV). These solutions aim to
expand the human-computer communication channel for more complicated VR interaction
scenarios and optimize the communication process to make it more usable and useful (see
Figure 3). More specifically, the solutions consider how users may benefit from receiving
helpful task-related information with additional virtual contents (e.g., occlusion visualizations),
extending their inputs and outputs to other modalities (e.g., eye gaze and on-body surfaces),
and automating their input commands to a VR system (e.g., intelligent suggestions).
Article I discusses how occlusion visualizations such as multiple viewports, virtual X-rays, and
object displacements can improve object selection, especially for fully-occluded targets. With
the help of additional visualizations displayed in the virtual world, users are provided with
extended capabilities to manually adjust their views and selections for completing a task.
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Human VR System

Virtual Hand and Raycasting

3D Digital Contents

Article III. On-Body Support

Article II. Gaze Support

Article IV. Intelligent Suggestion

Article I. Occlusion Visualization

Input

Output

Fig. 3. The proposed solutions in this thesis aim to expand the human-computer communication
channel and optimize the communication process for complex VR interaction scenarios.

Articles II and III illustrate how complementary modalities, including eye gaze and body
surfaces, can augment the mid-air selection and manipulation process. By designing how mid-
air interfaces may collaborate with other modalities, users can expand the human-computer
communication process to other effective channels, which delievers a richer set of interaction
vocabulary in VR.
Article IV demonstrates the optimal use of context-aware computational models to offer
prompt, intelligent suggestions to boost user performance and experience. Rather than entirely
relying on users’ manual input, the predictive models infer users’ intentions implicitly and
provide helpful task automation.
Our solutions and findings advance the understanding of more usable and useful 3D user
interfaces and will benefit future research and applications in handling a variety of novel VR
interaction scenarios.

1.3 Thesis Outline
The rest of the thesis is organized as follows. Chapter 2 provides a systematic literature review
that aims to identify ongoing research challenges in VR object selection and manipulation,
summarize the corresponding solutions, and categorize measurements that are essential in
determining the success of a solution. Next, Chapter 3 describes the methodologies that we
employed to complete the research work, such as design prototyping, user studies, and data
analysis. We also discuss the ethical considerations within our studies.
Chapters 4, 5, 6, and 7 present four articles (Article I-IV) that introduce new solutions for
enhancing Virtual Hand and Raycasting for target selection and manipulation in complex VR
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interaction scenarios. Specifically, Chapter 4 presents interactive visualizations that can help
with fully-occluded target selection. Chapter 5 and Chapter 6 illustrate designs incorporating
gaze and on-body surfaces into the selection and manipulation process. Chapter 7 demonstrates
an optimization framework to provide timely intelligent suggestions based on target prediction
models to assist object acquisition in VR.
After presenting the research publications, Chapter 8 reflects on the findings of this thesis
and summarizes the solutions that can help handle complex VR selection and manipulations.
In addition, we envision the future selection and manipulation techniques and point out
promising research directions. Finally, Chapter 9 concludes with a summary of this thesis.
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Chapter 2

LITERATURE REVIEW

Through more than 50 years of development of 3D interactions in VR, originating from
Sutherland’s work on interactively determining the viewing angle through head orientations
in 1968 [83, 165], a multitude of solutions have been proposed for virtual object selection and
manipulation. These solutions range from artifact inventions to empirical studies [9, 127, 172],
span across interaction techniques and devices to computational models [9, 61, 148, 194], and
extend over user input and feedback mechanisms [7, 43, 90, 168].
With the rapid development of selection and manipulation solutions, our literature review
aimed to answer the following questions: (1) What core challenges in VR selection and manip-
ulation have researchers been trying to address? Are there new challenges emerging with the
development of technology? (2) What are the state-of-the-art solutions for these challenges?
Why are these solutions considered successful in solving the challenge? Answering these
questions is critical to determining the backbone topics and emerging trends from the scattered
endeavors and ensuring the robustness and validity of our research practices.
We conducted a systematic literature review of 106 publications on object selection and
manipulation in VR headsets to answer the questions. We categorized eight research challenges
that the literature aimed to tackle, including those more relevant to this thesis regarding
complexity in 3D interaction scenarios (e.g., small, faraway, occluded, out-of-view targets) and
emerging trends such as context integration and collaborative manipulation. We also present
existing solutions to these challenges. Furthermore, we classified nine success measurements
used by previous research when resolving the challenges. This thesis has applied these crucial
measurements extensively, especially the 5Es (effectiveness, efficiency, ergonomics, experience,
and expressivity). Finally, we summarize our recommendations regarding research practices
and directions for future VR selection and manipulation studies.

2.1 Scope, Related Surveys, and Contributions
2.1.1 Scope and Definitions
The topic covered by this review is “object selection and manipulation in VR headsets”. This
section describes our scope and clarifies the inclusion and exclusion criteria.

§1 Object Selection and Manipulation. Object selection refers to acquiring or identifying one
or multiple objects from an entire set of objects available. Object manipulation concerns
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the further act(s) of handling the selected object, which can be broken down into sub-tasks,
including positioning (changing object position), rotation (adjusting object orientation), and
scaling (modifying object size) [83]. In this work, we focus on manipulations that preserve
the shape of objects (i.e., spatial rigid object manipulation [83]). Furthermore, we focus on
the selection and manipulation of general virtual objects rather than solutions developed
for selecting a specific object type (e.g., key selection in text entry, location selection for
teleportation).

§2 Fully-immersed VR headsets. This work focuses on VR technology that completely immerses
a user in a computer-synthesized virtual environment [109] (i.e., does not involve the direct
presence of real-world objects). The challenges and solutions of selection and manipulation
can be different in other immersive technologies that afford 3D user interfaces, such as AR and
MR, compared to VR because of the involvement of real-world objects [159]. In other words,
this review focuses on 3D user interfaces through the perspective of VR interaction, which may
or may not be applicable to other settings. Furthermore, we focus on VR head-mounted/worn
displays (HMD/HWD, or more colloquially, VR headsets), which means that the visual display
devices should be coupled to a user’s head. Therefore, stationary VR displays (i.e., displays that
do not move with the user), such as tabletop VR displays and CAVE, which afford different
interaction capabilities from VR headsets, are considered out of the scope of this research.

2.1.2 Related Surveys
Several related surveys aim to create a new classification or taxonomy of different 3D selection
andmanipulation techniques in the literature. Dang’s 2007 review [31] provides a chronological
view of 3D pointing techniques. It classifies them based on 3D pointer- or selection ray-based
control and how pointing is enhanced (e.g., reducing cursor movement distance, increasing
target size, or both). Argelaguet and Andujar’s 2013 survey [5] not only categorizes the
techniques based on their intrinsic characteristics (e.g., selection tool types and how a user
controls the tool) but also covers human pointing models and factors that may influence user
performance in selection tasks (e.g., target geometry and object density). LaViola et al.’s 2017
book [83] (which updates Bowman et al.’s 2005 book [21]) discusses techniques for 3D selection
and manipulation based on a classification of their metaphors: grasping, pointing, surface,
indirect, bimanual, and hybrid. Weise et al.’s 2019 paper [178] also classifies 3D selection and
manipulation techniques according to their different characteristics (e.g., metaphor, degree-
of-freedom, reference frame). Mendes et al.’s 2019 survey [105] reviews 3D virtual object
manipulation techniques, from desktops to immersive environments. It proposes a taxonomy
based on environment properties and types of transformations. Overall, these taxonomies
provide structured ways of viewing the 3D interaction techniques in the literature and offer
helpful insights into designing new 3D user interfaces.
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Other than creating new classifications of the techniques, more relevant to our work are
surveys that identify significant design challenges with 3D interfaces and research trends
for future work. Hinckley et al.’s 1994 survey [64] synthesizes design issues and potential
solutions for developing effective free-space 3D user interfaces. For example, they identify that
users may have difficulty understanding 3D space and offer solutions such as multi-sensory
feedback to resolve this issue. They are also concerned about issues related to, for instance,
dynamic target acquisition and ergonomics. Hand’s 1997 survey [57] overviewed state-of-
the-art 3D interaction techniques at that time and highlighted the research opportunity of
usability testing for future work. Similar to these surveys, our work aims to determine research
challenges and solutions and identify future research directions. We achieved this through a
systematic literature review to provide an updated view of the early surveys, given the recent
advancement of VR technology.
Bergström et al.’s 2021 review [13] derives guidelines on how to conduct and report object
selection and manipulation studies in VR. Task types, experimental settings, target parameters,
and dependent variables of such studies were analyzed in detail. The goal is to inform the design
of future research studies. Other surveys overlap with our topic and inform the analysis in this
paper [1]. These include, but are not limited to, a review of mid-air interaction [79], a survey
of interaction with large displays [4], and a review on distant object selection methods [88].

2.1.3 Contributions
This review focuses on determining (1) the primary challenges research papers aimed to
solve in VR object selection and manipulation research and (2) the existing solutions to
these challenges. While numerous research papers are published annually, it is essential to
summarize the scattered research endeavors and analyze critical research challenges and the
corresponding state-of-the-art. This helps us reflect on the existing practices and identify the
backbone topics and emerging trends in the research field. Furthermore, our work surveys
and evaluates (3) how researchers measure their success under each research challenge. These
essential measurements guide the development of our solutions.

2.2 Methodology
We followed the PRISMA guidelines [113] to select relevant publications for analysis. Our
initial information sources of publications came from online databases and the most relevant
literature review papers. We then applied the four-step process (identification, screening,
eligibility, inclusion) to derive our final corpus. Figure 4 gives an overview of this filtering
procedure.
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Fig. 4. PRISMA flow diagram of our systematic review.

2.2.1 SystematicQuery Searches within Online Databases
To identify relevant, high-impact papers on object selection and manipulation in VR headsets,
we first performed systematic query searches within online databases, including ACM Digital
Library, IEEE Xplore, Wiley Online Library, Scopus, Taylor & Francis Online, and Springer Link.
The publication venues included in the search were CHI, UIST, VRST, SUI, CSCW, Ubicomp, DIS,
IUI, TOG, IMWUT, PACM HCI, TOCHI, IEEE VR (including 3DUI), ISMAR, TVCG, Computer
Graphics Forum, IJHCS, Computer & Graphics, IJHCI, and Springer VR. These venues were
selected based on the authors’ expertise in HCI and VR, as well as their impact, according to
Google Scholar Metrics.
To identify publications that are primarily relevant to object selection and manipulation in VR
headsets, we used “selection”, “manipulation”, and “virtual reality” as our initial search terms in
publication titles and iteratively derived their synonyms based on the literature present in the
publication venues mentioned above. The new terms identified were “pointing”, “acquisition”,
“VR”, “3D”, and “immersive”. We did not include the term “interact” (as for object interaction)

10



Chapter 2 - LITERATURE REVIEW

or search the publication abstracts for keywords as they returned a large number of irrelevant
records from the online databases. We documented our detailed search process and results
in our supplementary material. A simplified example query in ACM Digital Library, without
including the publication venues, is:

Title:((acqui* OR point* OR select* OR manipulat*) AND (virtual OR VR OR 3D OR Immers*))

Here, * denotes any number of unknown characters (wild cards). We thus were able to include
other word forms such as “manipulate”, “manipulating”, and “manipulation”. The word “virtual”
was used to capture similar wordings of virtual reality environments such as “virtual environ-
ment” and “virtual object manipulation”. In total, we obtained 392 records from searching the
databases.
After obtaining these initial records, we first screened their titles and abstracts to exclude
papers that were irrelevant to our exploration (e.g., constructing a 3D point cloud). This
process left us with 242 publications. Next, we assessed the full text of these publications for
eligibility according to three criteria: (1)not about object selection and manipulation; (2) not in
VR headsets; (3) not a full paper. The first two criteria were based on the scope of this research.
We also excluded posters and extended abstracts as they do not usually have the same level of
maturity as full papers. At the end of this filtering procedure, we were left with 69 publications.

2.2.2 Records from Relevant Literature Reviews
In addition to performing query searches, we also examined all references in the three most
relevant literature review papers to extract further papers relevant to our topic. This was to
ensure that we included impactful papers that were not published in the selected publication
venues or did not use our keywords in the title (e.g., object interaction instead of selection or
manipulation). The literature review papers we used were: Argelaguet and Andujar’s survey
on 3D object selection techniques for virtual environments in 2013 [5], Bergström et al.’s
papers on guidelines for evaluating VR object selection and manipulation in 2021 [13], and
Mendes et al.’s survey on 3D virtual object manipulation in 2019 [105]. We assessed the papers’
titles and full texts to exclude less relevant papers using the same criteria and made sure to
remove duplication in the collected papers. At the end of this process, we were left with 37
publications.

2.2.3 Dataset and Coding Process
In total, we collected 106 publications (69 from online database query searches and 37 from the
three most relevant literature reviews) as the corpus for further analysis. With this corpus, we
first coded the challenges, research goals, proposals/methods, and measurements of success in
text fields by collecting quotations from the papers. We then iteratively defined and categorized
challenge types across the papers and further distilled 8 core challenges. Both preliminary and
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final challenge types were coded categorically. We also coded relevant information such as
contribution types, solution types, study types, and success measure types categorically by
referencing the categories in previous research [85] and iteratively defining them. Some papers
had made multiple contributions and proposed various solutions, and we thus distinguished
their primary and secondary contributions and solutions in our coding. Readers can find more
details in our coding manual.

2.3 Overview of Contribution Types
We investigated the contribution types of the 106 publications in our corpus according to
Wobbrock and Kientz taxonomy [188]. Figure 5 summarizes the results. A significant portion of
the papers contributed new artifacts (42 papers, 39.6%), including, for example, new interaction
techniques for occluded target selection [152, 174, 198], systems for grasping rendering [34,
119], and novel haptic devices [7, 43, 87]. Another mainstream of the papers focused on
empirical contributions (49 papers, 46.2%), where user studies were carried out to evaluate or
compare technological solutions [80, 127], fine-tune design parameters [144, 182], investigate
the effects of a factor [10, 78], or explore design possibilities [91, 191]. There were four
methodological papers (3.8%) on standardizing the research practices in VR object selection
and manipulation [13, 19, 20, 137]. Eight were survey papers (7.5%) that have provided a new
taxonomy of the techniques [31, 105] or intended to answer specific research questions [36].
Three papers (2.8%) have a theoretical emphasis on initiating new design spaces or frameworks
that could motivate new interaction techniques [111, 129, 160]. Note we classified qualitative
models, such as models that predict selection endpoints [61, 194], as either empirical or artifact
contributions. While these models may have predictive power, they do not aim to provide
a systematic set of statements that explains the fact (e.g., why the endpoints distribute in a
certain way), which is an essential component of a theoretical contribution [141]. None of the
papers has the primary contribution of datasets or opinions.

2.4 Research Challenges and Existing Solutions
We identified eight research challenges and their corresponding solutions for VR object se-
lection and manipulation research. We iteratively defined these eight core challenges by
surveying the problems research publications in our corpus aimed to solve and their research
goals. Throughout our categorization process, we wanted to capture popular research chal-
lenges that have already attracted many researchers to try to address them. We were also
interested in identifying emerging topics that now have a limited number of publications but
may still be promising for future research to consider. Table 2 summarizes these research
challenges and solutions.
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Fig. 5. Number of publications under the contribution types proposed by Wobbrock and Kientz [188].

We note that our categorization of the research challenges is not mutually exclusive, and
many papers presented within each section may tackle one or more challenges. Our goal
was to capture and classify the primary obstacle that a research paper aimed to resolve and
the main solution offered by the paper. Through this process, we can draw a clear picture of
the representative themes in the VR selection and manipulation literature. We also note that
we excluded general surveys that do not tackle specific challenges (but summarize them or
their solutions) [5, 31, 57, 64, 79, 105, 163] and an early programming implementation of basic
interaction techniques [142] in this analysis.

2.4.1 Complexity in 3D Interaction Scenarios
Though VR technology may create unprecedented opportunities for new types of interaction,
developing appropriate VR interfaces for selection and manipulation is not trivial. As illustrated
in the introduction of this thesis, Virtual Hand and Raycasting may not be sufficient for more
complex scenarios that contain small, faraway, and occluded targets or require precise, versatile,
and prolonged operations. Therefore, the papers under this theme aim to develop optimal
selection andmanipulation interfaces for simple andmore complex 3D VR interaction scenarios.
In the following, we present thirty-four papers that address complexity in 3D interaction
scenarios. Among the selected papers, most of them (27 papers, 79.4%) primarily contributed
new artifacts, including (1) interaction techniques, the fusion of input and output for users to
complete tasks in human-computer dialogues [45, 169], (2) devices, the hardware pieces em-
ployed by users to communicate with a computer [24, 65, 99], and (3)models, the computational
assistance that improves the usability of an interface through user behavior prediction [61]. The
remaining papers (7 papers, 20.6%) primarily presented empirical contributions. Empirical user
studies were carried out to derive (1) design knowledge, the body of knowledge that can be used
in similar application scenarios, e.g., the advantages and disadvantages of a technique [172],
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Table 2. A summary of research challenges and solutions on VR object selection and manipulation.

1 Complexity in 3D Interaction Scenarios
Challenge - Selecting and manipulating 3D virtual objects in VR headsets can be challenging because the
interaction scenarios may contain small, faraway, occluded, out-of-view, and multiple targets and the tasks
may require precise, versatile, and prolonged control.
Solution - Developing optimal selection and manipulation designs for simple and complex (e.g., distant,
occluded, out-of-view targets) VR scenarios.

2 Underexplored Interaction Spaces and Factors
Challenge - Understanding new opportunities (i.e., design spaces or ways of interaction) and considerations
(i.e., factors that influence user behavior or responses) of 3D user interfaces.
Solution - Conducting usability studies on (1) possible ways to offer new interaction (e.g., 3D eyes-free
selection) and (2) scrutinizing how specific factors (e.g., the presence of multimodal feedback and visual
avatar) influence user performance, experience, and behavior.

3 Unknown Comparative Usability
Challenge - The lack of understanding or guidelines of the relative usability between different solutions
to inform “which method(s) to choose under a given situation”.
Solution - Conducting usability studies on comparing alternative choices of devices (e.g., game controller
vs. 3D pen-like device), modalities (e.g., gaze vs. hand vs. head), and techniques (e.g., Raycasting vs. Virtual
Hand).

4 Ergonomic Issues: Workload and Fatigue
Challenge - Limitations regarding users’ physical interaction space (e.g., space constraints).
Solution - Developing techniques that aim to fulfill users’ comfortable requirements.

5 Imprecise Rendering of Visual and Haptic Realism
Challenge - Enabling realistic visual and haptic rendering during object selection and manipulation under
hardware limitations and form factor constraints.
Solution - (1) Proposing algorithms for realistic hand rendering, (2) building devices for simulating
different haptic features (e.g., textures, shapes, and stiffness), and (3) conducting usability studies to explore
methods that can improve perceived visual and haptic realism.

6 Underdeveloped Evaluation Methodology
Challenge - Standardizing the practices of evaluating selection and manipulation solutions to allow the
generalization of results across studies.
Solution - Building relevant testing framework, testbeds, and guidelines.

7 Limited Support for Collaborative Object Manipulation
Challenge - Simultaneous manipulation of a virtual object with multiple users.
Solution - Building framework and techniques to enable simultaneous object manipulation.

8 Context Integration and Workflow Optimization
Challenge - Integrating selection and manipulation into the “broader” context and workflow.
Solution - Developing techniques that consider the context and simplify the workflow.
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(2) design recommendations and guidelines, the explicit set of “rules” that inform future de-
signs [107, 168, 195], (3) desired design parameters, the setting of design parameters where the
proposed solution can be the most useful [90], and (4) models [194], verbal or mathematical
representations that describe and predict the characteristics of human-computer interactive
dialogues [99]. We elaborate on existing solutions for VR selection and manipulation as follows.

§1 Selection Approaches. Many proposed techniques improved the selection efficiency and
accuracy by adjusting the criteria of how the selection of a target is determined. Rather
than requiring a tiny virtual pointer to be exactly “on” the targeted object, an enhanced
technique may select the closest object to the pointer [9, 161], scale up the cursor size [46, 96],
leverage computational models to predict the intended target [61, 194], or introduce crossing-
based [168] or multi-step selection techniques [106]. Techniques also added an extra dimension
of movement (moving along the depth dimension) to the Raycasting pointer [9] or distributed
multiple 3D cursors across the space [148]. Moreover, they incorporatedmulti-modality support
with pen-based input (that leveraged dexterous movements of fingers) [90] and synergetic
gaze and head-based input [153].
Other selection techniques were developed to handle more complex 3D VR environments
that contain distant, occluded, out-of-view, or multiple targets. While a user can only select
objects within the arm-reach distance with Virtual Hand, assistant techniques may extend the
movement of the virtual hand [18, 134] or create a reachable replica of the virtual environment
or its elements [128, 163]. For partially or fully-occluded targets, existing techniques, including
our research presented in Chapter 4, leveraged dis-occlusion visualizations (e.g., making
distractors transparent or translating candidate objects into new locations) to identify the
target [174, 198]. Techniques also modified selection mechanisms (e.g., gaze-based outline
pursuits [152], Bézier curve-modified selection ray [44]) to acquire such occluded targets
more robustly. For an out-of-view target, proposed techniques may guide the user towards
its location through, for example, vibrotactile cues [82]. If there were multiple targets in the
scene, techniques could create a selection volume via, for example, a volumetric cube, a lasso,
or a virtual tablet and further progressively refine the selection [72, 114, 162].

§2 Manipulation Approaches. The literature presented two main methods to improve the
usability of VR object manipulation: degree-of-freedom (DoF) separation and control-display
ratio (CD ratio) adjustment. DoF separation-based techniques reduced the number of DoFs
being controlled simultaneously compared to Virtual Hand (which has 3 axes for translation,
rotation, and scaling). For example, researchers adapted 3D virtual widgets similar to those
used in desktop CAD software (e.g., Unity, Blender) for VR headsets [23, 86, 107, 108]. They
further enabled user-defined 3D anchor points or transformation axes [51, 108]. CD ratio
adjustment-based techniques dynamically increased or decreased the movements of the virtual
hand compared to the corresponding physical hand [108, 134]. For example, scaling up the
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movement may allow coarse, rapid manipulation while scaling it down may enable more
fine-grained transformation [47, 48]. Additionally, previous research has also combined Virtual
Hand and Raycasting [157, 172], designed finger gestures for rotation control [157], allowed
users to impersonate an under-manipulated object [173], and incorporated gaze input into the
manipulation process [195] (our research in Chapter 5).

2.4.2 Underexplored Interaction Spaces and Factors
One primary goal of HCI research is to understand users’ needs towards computing interfaces
and map out new spaces of designs. Shifting from traditional 2D interfaces like PC screens
and tablets, many research questions exist on how to best leverage the 3D virtual space for
interactions [83]. Specifically, there is a need to understand the new opportunities (i.e., design
spaces or ways of interaction [56, 60]) and considerations (i.e., factors that may influence user
behavior or responses) that 3D interfaces may bring. Therefore, determining underexplored
interaction spaces and factors is another major challenge that many papers aimed to resolve
in the literature.
Twenty-eight papers in our corpus aimed to explore new interaction spaces and factors that
may enhance VR selection and manipulation. The majority (24 papers, 85.7%) focused on
empirical contributions through discovering design knowledge, design recommendations and
guidelines, desired design parameters, and models. There was one survey paper on conducting
a meta-analysis to derive guidelines [36], two theoretical papers on a framework [111] and a
conceptual model [160] of underexplored spaces, and one artifact paper on a novel device to
offer new ways of interaction [55].
A collection of papers examined new design spaces to offer interaction. They considered, for
example, the feasibility of eyes-free target acquisition [111, 190, 191, 202], the practicability of
freehand pointing without a selection ray [30, 104], and the usefulness of modifying control-to-
display mappings (input scale [49, 81, 182], direct vs. indirect input [81], and cursor offset [89]).
They also tried to understand how users prefer to select and manipulate objects in VR [121,
184]. Moreover, they investigated the locations of providing 3D virtual interfaces (e.g., arm-
anchored [91], smartphones [81], fovea and periphery regions [76], user’s own body [111],
and a display attached to the face [55]) and the spatial and temporal aspects of selection [160].
Another set of works scrutinized how specific factors presented in user interfaces may influence
performance, kinematic features, and user perception during VR selection and manipulation
tasks. These factors include multimodal feedback [6], interaction fidelity (e.g., widgets vs.
physically grabbing items) [143], the presence of a virtual avatar [33, 36], the aptitude and
experience of individuals [183, 185], perception of redirection [32], the absence of haptic
feedback during VRmanipulation [97], and object features like size and distance (e.g., [183, 194]).
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Other works explored the impact of device-related factors on VR selection, including vergence-
accommodation conflict [10], stereo deficiency [11], and jitter of input device [12].

2.4.3 Unknown Comparative Usability
While numerous new solutions have been developed for interactions in VR every year, their
comparative usability is not always clear, such as effectiveness, efficiency, and satisfaction [66].
The lack of understanding or guidelines of the relative usability makes it hard to choose a
more suitable approach for different applications. To solve this challenge, some research is
dedicated to comparing the usability among different VR selection and manipulation solutions.
These studies aim to inform the design decision of “which method(s) to choose under a given
situation”.
Notably, comparing usability among different solutions is common in the relevant literature.
The unique point of the research studies summarized in this category is that they typically do
not propose new interactions or explore new interaction spaces. In contrast, they leverage
existing solutions and compare them under new conditions.
We identified fifteen papers in our corpus where the primary goal was not to develop new
methods but to perform rigorous empirical evaluation studies that compare choices of de-
vices [3, 17, 80, 112, 127], modalities [29, 39, 68, 112, 124, 138], and techniques [78, 103, 135,
136, 177]. They all were empirical contributions, focusing on developing design knowledge,
guidelines, and recommendations. For example, existing studies compared displays (e.g., VR,
AR, and PC screens) and input devices (e.g., handheld controller, bare hand, 3D pen-like device,
and mouse) for object selection and transformation tasks [3, 80, 127]. A few studies measured
the performance of different input modalities (e.g., eye, hand, head, and muscle contraction)
for VR object selection [29, 68, 124, 138]. They also analysed feedback modalities like auditory
and force and derived design guidelines based on the study results [39]. Moreover, researchers
also conducted empirical studies to compare the ability of DoF control during object manipula-
tion [78], visualization techniques for precise object alignment [103] and fixed vs. handheld
menus for selection [177].

2.4.4 Ergonomic Issues: Workload and Fatigue
Ergonomic assessments on workload and fatigue have been applied extensively to evaluate
and compare different selection and manipulation approaches [13]. Measurements through
self-reports (like NASA-TLX [58] and Borg CR10 [15]) are often included in studies as accom-
panying metrics. However, existing VR interactions may still require large, cumbersome body
movements, overlooking the limits of a user’s physical interaction space, comfortable require-
ments, and mobility issues [115, 179]. Therefore, recent research investigates the challenge
of improving user comfort within constrained, physical, and operational spaces during VR
interactions.
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Our corpus presented two papers that address ergonomic issues related to workload and
fatigue during VR interaction. Both papers primarily contributed new artifacts that leveraged
new interaction techniques, while one also proposed design recommendations [179]. Montano
et al. [115] proposed an optimization-based retargeting strategy to relocate visual targets to
more convenient reaching positions. Wentzel et al. [179] investigated non-linear virtual hand
amplification functions to improve arm ergonomics while maintaining body ownership. Both
methods made the VR interaction experience more comfortable and accessible.

2.4.5 Imprecise Rendering of Visual and Haptic Realism
With advances in optics and audio technologies, current VR headsets can provide people with
an improved sense of presence in simulated realities, creating a fully immersive experience [8].
However, realism often breaks when users attempt to grab and manipulate virtual objects: their
virtual hands/fingers can pass through the object [119], and they cannot “feel" the physicality
of the object in the real world [144, 149]. For Virtual Hand-based selection and manipulation
methods that mimic real-world experience, the challenge is to discover realistic visual and
haptic rendering techniques under hardware limitations and form factor constraints.
We identified four papers on achieving visually realistic grasping of objects during VR manip-
ulation. Three were primarily artifact contributions on new rendering systems, and one was
an empirical contribution that evaluated alternative visual representations. Oprea et al. [119]
proposed a system that automatically fits a hand to the shape of virtual objects during grasping.
Delrieu et al. [34], and Sorli et al. [158], realizing there might be inherent mismatches in the
tracked hand and the virtual hand during hand-object manipulation without a real physical
object, introduced strategies that balance between the tracked and the simulated hand to enable
fine manipulation. Dewez et al. [35] considered the visual realism of users’ avatars when using
techniques that adjust the CD ratio during selection and manipulation (e.g., Go-Go [134]) and
examined dual representations of a user’s virtual body.
Our corpus also included five papers on providing active or passive haptics to enable haptic
renderings like textures, shapes, stiffness, and weight of objects during VR manipulation. Four
were artifact contributions on new haptic devices, and one was empirical contributions on
determining design parameters for more believable haptics. A few papers focused on active
haptic techniques that exert forces onto virtual contact areas through haptic devices to simulate
a compelling interaction experience [7]. Schorr and Okamura [149] and Lee et al. [87] built
wearable devices to trigger haptic feedback on users’ fingertips. In contrast, others examined
passive haptic approaches that leverage a pre-defined set of physical props as proxies of virtual
objects. For instance, Arora et al. [7] used custom-designed LEGO bricks to simulate various
object shapes. Feick et al. [43] further used composable shape primitives and connectors to
simulate the haptic sensations of a complex virtual model. While providing a matching physical
prop for every virtual object is not scalable, Samad et al. [144] created illusions of the changed
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weight of virtual objects with limited physical props by adjusting the CD ratio within an
appropriate range.

2.4.6 Underdeveloped Evaluation Methodology
A valid, reliable, and reproducible evaluation methodology is the cornerstone for assessing the
usefulness and effectiveness of a new method for selection and manipulation [188]. Results
yielded under rigorous evaluation methodologies can accumulate replicable findings, provide
design guidelines, and potentially enable the comparison of techniques across studies [13].
The initial obstacle of this space was to build a representative set of VR interaction tasks, task
parameters, and evaluation metrics so that the research findings could be generalized beyond a
particular experimental setting [19, 20, 83, 137]. However, with the evolution of VR technology,
the challenge shifted towards designing evaluation studies that may consider a variety of
new, important factors that are not covered in a canonical task setting while preserving
generalizability [13, 199]. Ultimately, these methodological works aim to standardize the
practices in technique evaluation [13].
Our corpus contained five papers on standardizing evaluation methodologies of object selection
and manipulation in VR. Four methodological contributions involved testbeds, frameworks,
and design guidelines that inform how to conduct empirical studies. One empirical contribution
investigated whether specific factors could influence the validity of user evaluations.
Poupyrev et al. [137] and Bowman et al. [19, 20] formalized the early testbeds for technique
evaluation. Poupyrev et al. [137] presented VRMAT, a testbed containing three basic interaction
tasks (select, position, and orient) with their corresponding independent variables and evalua-
tion metrics. Bowman et al. [19, 20] further suggested that an interaction task (e.g., colouring
an object) can be broken down into several sub-tasks (e.g., selecting an object, selecting a
colour, and applying a colour). Each sub-task can be achieved by various interaction techniques,
which can be evaluated by manipulating important outside factors (like task characters and
environments). More recently, Yu et al. [199] investigated the potential issue of disengagement
with long, repetitive selection experiments and evaluated motivational strategies to incentivise
participants during such experiments. Bergström et al. [13] analyzed research works in evalu-
ating object selection and manipulation from 2000 to 2019 and proposed recommendations
and checklists on task design and result reporting for guiding future studies.

2.4.7 Limited Support for Collaborative Object Manipulation
When multiple users collaborate in VR, a common need is to move and modify objects within
the virtual space cooperatively [41, 140]. For example, users may need to assemble a complex
object together [175], modify a 3D data visualization concurrently for exploration [14, 38],
and place digital furniture at different locations for configuration testing [140]. Existing
research identifies the challenge of simultaneous manipulation of a virtual object with multiple
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users [84, 129, 130, 156, 175]. When two or more users want to manipulate the same virtual
object, it is essential to determine who should control the object for better efficiency and user
experience.
Our corpus captured two papers on providing simultaneous object manipulation in VR headsets.
There was one theoretical contribution and one artifact contribution. Pinho et al. [129] intro-
duced a conceptual framework (Collaborative Metaphor) that considers which input technique
to use, how to combine them, and how to display a user’s action to others in a collaborative
task. They also presented interaction techniques that, for example, allowed users to control
different transformations (like managing either translation or rotation) or employ different
input techniques (using either Raycasting or Virtual Hand). Wang et al. [175] proposed an
interaction technique that determines the dominant manipulator based on a viewport quality
function that examines quantities like object visibility and distance of the target.

2.4.8 Context Integration and Workflow Optimization
Though selecting or manipulating an object is typically treated as individual tasks in research
studies, they are associated with scene and interaction contexts in realistic applications. For
example, a selected object may belong to a group of closely-related objects, which are often
manipulated together [176]. A manipulation gesture may result in multiple consequences
because the same gesture is used for several tasks [27, 100]. Integrating selection and manipu-
lation techniques into the “broader” context and workflow is another challenge based on the
literature.
We identified three recent papers that proposed new artifacts (specifically, interaction tech-
niques) on this topic. Mardanbegi et al. proposed EyeSeeThrough that simplifies the process
of tool selection and application: users can visually align a target object with the tool at
the line-of-sight to apply the tool to the object, rather than performing a tedious two-step
operation of first selecting the tool and then selecting the target [100]. Chen et al. proposed a
technique that resolves ambiguous hand manipulation gestures (e.g., hand movements can
either displace or stretch an object) with a pop-up menu that can be interacted with head
gaze [27]. Wang et al. developed a method that considers scene context information, such as
object semantics and interrelations, when selecting or moving an object. For example, the
technique can automatically adjust the yaw of a chair during translation to make it face a
nearby table [176].

2.4.9 Summary Statistics
We analyzed how the number of publications under each challenge changed over the years.
The results are summarized in Figure 6. The total number of publications has significantly
increased in recent years (since 2017) because of the advancements made in the off-the-shelf
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Fig. 6. Number of publications under each challenge by year.

headsets and development kits. Note that our literature review was initiated in early 2022, so
limited publications were captured for this year.
The topics of complexity in 3D interaction scenarios, underexplored interaction spaces and
factors, and unknown comparative usability have remained attractive and mainstream since
the 1990s. There are also emerging themes where all relevant publications appear in more
recent years. Researchers gained interest in resolving ergonomic issues related to workload and
fatigue, rendering more precise and believable visuals and haptics, and integrating selection
and manipulation techniques into a broader interaction context. One interesting observation is
that the publications on evaluation methodology were present early in 1997 and 1999, remained
silent between 2000 and 2019, and were picked up again until more recently (2020 and 2021).
Also, the topic of collaborative object manipulation appeared in 2002 and was continued in
2021.

2.5 Measuring Success
According to the presented research challenges and solutions, we further investigated and
reflected on how authors of the selected papers measure the success of their solutions. Based on
the literature, we first categorized nine success measures (effectiveness, efficiency, ergonomics,
experience, robustness, expressivity, realism, behavior, and consistency). We then analyzed
how these measurements were applied in each research challenge.
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2.5.1 Measures
We first summarised and categorized the success measures used in the papers. During the
iterative development process, we borrowed concepts from Hornbæk’s work [66] on usability
measures while extending the original classifications (effectiveness, efficiency, and satisfaction)
to a more detailed, domain-specific version with nine measures. For example, we distinguished
efficiency in terms of completion time and workload into two different usability measures
(efficiency and ergonomics) to improve the granularity. We also introduced new dimensions
more relevant to VR selection and manipulation research, such as robustness, expressivity, and
realism.
• Effectiveness. Effectiveness represents “the accuracy and completeness with which users
achieve specific goals” as according to ISO 9241 [71]. Specific measures used in our corpus
include error rates (e.g., percentage of incorrect selections [11, 96]), error distances or
rotations (e.g., offsets between the target and the actual input [87, 104, 107, 175]), false
positives/negatives (e.g., in a group selection scenario [114, 162]), and task completion (e.g.,
completion rates [48, 51]). They also involve prediction accuracy of a model [30, 61, 194]
and may get incorporated into throughput measures [6, 68].

• Efficiency. The ISO 9241 (2018 version) defines efficiency as “resources used in relation
to the results achieved” such as time, human effort, and materials [71]. To make it more
specific to our tasks, we considered efficiency as the time cost associated with the results
achieved. The typical measure in our corpus is task completion time (e.g., cursor move-
ment time [127], selection time [199], manipulation time [34]). They also get involved in
throughput measures [91].

• Ergonomics. While ergonomics is a broad term in certain contexts, we here restrict it to the
physical or mental workload associated with the results achieved. Objective quantification
(approximation) of ergonomics employed in our corpus include hand/arm movement dis-
tance [96, 195] and RULA (rapid upper limb assessment) score [115]. Subjective measures
related to ergonomics contain questionnaire results from NASA-TLX [55], Borg CR10 [179],
customized scales of fatigue and comfort [96, 127], and qualitative feedback [90].

• Experience. This encapsulates users’ feelings and satisfaction when performing tasks with
the evaluated solutions [65]. These data are normally collected from questionnaires. The
measures include, but are not limited to, overall impression [43], general user experience [176,
198], satisfaction [68], preference [49, 111, 127], sense of control [51, 68], body ownership [33,
35, 87, 144, 179], ease-of-use [153, 172], fun [51, 107], perceived performance [81, 96, 173],
perceived ease of learning [27, 47], perceived usability [103], intuitiveness [27, 96], sense
of presence [86, 175], immersion [143], engagement [143], obtrusiveness [112, 198], and
sickness [182, 191].
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• Robustness. A robust solution remains useful under different testing conditions, especially
if the solution has been evaluated to achieve good performance under more challenging
scenarios. It can also mean that a derived conclusion performs consistently across multi-
ple studies. For example, researchers have tried to evaluate their solutions under difficult
scenarios (e.g., wider or untested conditions for a predictive model [194] and high occlu-
sion scene [96, 152]) to test their robustness. They have also performed meta-analyses to
determine robust conclusions [13, 36].

• Expressivity. This means that a solution can be applied for a wide range of interaction
scenarios or even enable new use cases. To demonstrate expressivity, researchers often
present a section of application scenarios in the paper (e.g., [43, 176]). For instance, when
introducing the haptic device VirtualBricks [7], the authors also detailed example applications
such as its use in first-person-shooter games, fishing, disco, etc. Additionally, a framework or
testbed may illustrate its expressivity through sample techniques and use cases [20, 129, 137].

• Realism. Realism (sometimes dubbed as naturalness [34, 158]) is defined as how well the
way of interacting with virtual objects corresponds to the way of interaction in the physical
world. We consider it separately from experience measures as it emphasizes the cognitive
judgment of physical-virtual mismatches more than the interaction experience itself. Realism
is also different from body ownership, the psychological mapping of one’s real body to a
virtual body [155], and sense of embodiment, the illusion that the co-located virtual body
has effectively replaced their physical body [52]. Realism is typically assessed through
customized scales [34, 112, 158], discrimination tasks (e.g., weight discrimination [144, 149]),
or a qualitative interview [144].

• Behavior. User behaviors are likely to change if a new solution is adopted. Several papers
in our corpus have demonstrated that different approaches could influence interaction
strategies [172, 195], movement profiles [6, 182, 194], and Fitts’s law parameters [68, 168]. A
few showed that their solutions could encourage positive behaviors in an interaction context.
For example, the solutions can increase user participation [175], cursor speed [127], and
maximum reach distance [35]. They can also decrease the number of iterations to complete
a task [135], the number of target re-entries [10, 11], and the number of times that users
press the trigger button [49].

• Consistency. Consistency, in our case, means that a solution could maintain its performance
over an extended period. A few papers in our corpus have checked the performance of their
solutions in a prolonged interaction scenario. They found the performance (e.g., completion
time and error rates) could be influenced by learning/practicing [35, 168, 183], fatiguing,
and disengagement [199].
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Fig. 7. Top: The likelihood of success measurements being used by the authors to argue their interaction
techniques, models, devices, and systems to be “better than” or “comparable to” previous or other
alternative approaches in artifact papers. Bottom: The likelihood of success measurements being used
in empirical, methodological, theoretical, or survey papers to evaluate the potential solutions.

2.5.2 How Solutions Address Each Research Challenge
We assessed how success measures were used in each paper, which aimed to address the
aforementioned research challenge. In artifact papers, a success measure refers to the evidence
the authors provide to claim their proposed interaction techniques, models, devices, and
systems, to be “better than” or “comparable to” previous or other approaches. In empirical,
methodological, theoretical, or survey papers, all the evaluation metrics were considered as the
success measures—we assumed that the authors considered the evaluation metrics essential
for a successful solution to use them in the study. Because of this inherent difference between
contribution types, we analyzed them separately.
We first investigated the likelihood (percentage) of success measures being used to evaluate
the solutions to each research challenge (Figure 7). We removed a challenge category for
measurement percentage analysis if it consisted of fewer than 5 papers (i.e., a small sample
size). We then performed additional analysis to offer insights tailored to the contribution types.

§1 Artifacts. For the challenge of managing the complexity in 3D interaction scenarios, the
corresponding artifact papers emphasized more on effectiveness (13/27, 13 out of 27 papers),
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efficiency (10/27), experience (12/27), and expressivity (9/27) to demonstrate the success of
their solutions. That is, the proposed solution was often argued to achieve better performance,
such as faster completion and fewer errors, provide more satisfactory user experiences, and be
suitable for various application scenarios. Ergonomics (6/27) and robustness (4/27) measures
were less often used in the arguments, and there was little attention to realism, behavior, and
consistency measurements.
Regarding the challenge of the imprecise rendering of visual and haptic realism, the dominant
measurement was experience (5/7), followed by effectiveness (3/7), efficiency (3/7), expressivity
(3/7), and realism (3/7). This indicated that while the solutions might be proposed to improve
realism, they could also enhance user experience (e.g., body ownership, sense of embodiment)
and performance. The solutions were often demonstrated to remain useful in many application
scenarios.
Further analysis of all artifact papers suggested that when a solution achieved better perfor-
mance (effectiveness or efficiency), the probability that it outperformed other solutions in
the experience measure was 76.9% and in the ergonomics measure was 34.6%. If performance
was improved, the likelihood that the artifact performed superior in both effectiveness and
efficiency measures was 34.6%. There were 24.4% of the solutions performed better in more or
equal to four measurements.

§2 Empirical, methodological, theoretical, and survey. For the challenge of complexity in 3D
interaction scenarios, the empirical papers employed similar measurements as in the artifact
papers. More papers evaluated effectiveness (5/7), efficiency (6/7), ergonomics (3/7), and expe-
rience (4/7), with limited analysis on robustness (1/7). One paper (1/7) measured consistency
in learning the techniques over time.
When exploring new interaction spaces and factors, a large number of papers focused on
standard measurements such as effectiveness (18/27), efficiency (17/27), and experience (14/27).
Ergonomic measures, including fatigue and workload, were also used in some cases (8/27). Only
a few papers assessed robustness (1/27), expressivity (2/27), realism (1/27), and consistency
(1/27) measures. As behavior measures(4/27), there were explorations on whether the potential
solutions could encourage positive user behaviors, such as decreasing the re-entry rate.
Similarly, more frequent measurements when comparing alternative solutions were effec-
tiveness (9/15), efficiency (14/15), ergonomics (9/15), and experience (11/15). There were also
limited analyses on expressivity (1/15), realism (2/15), and behavior (3/15).
For developing evaluation methodologies, the papers mainly demonstrated that their frame-
work or testbeds could achieve the desired purposes (effectiveness: 4/5) and be adapted to
new application scenarios (expressivity: 3/5). One empirical paper also investigated the effect
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Fig. 8. Left: How new artifacts outperform alternative baselines in different success measurements
across years. Right: How successful measurements were employed in empirical, methodological, theo-
retical, and survey papers across the years.

related to efficiency, ergonomics, experience, and consistency when adjusting the evaluation
methodology.

§3 The usage of different measurements over time. In Figure 8, we summarized how success
measurements were applied in different types of papers over the years. For artifact papers,
there seemed to be a trend that more recent solutions were evaluated to outperform base-
lines in more diverse sets of successful measurements (i.e., more colors in the stacked bars).
For empirical, methodological, theoretical, and survey papers, different measurements were
commonly employed to evaluate different perspectives of the solutions across years.

2.6 Discussion
Based on our literature review, we first discuss findings on classic challenges and emerging
trends in the field of VR selection and manipulation, together with an overview of the solutions.
We then discuss how success measurements have been leveraged to address research challenges.

2.6.1 Classic Challenges and Emerging Trends
By categorizing the research challenges the publications aimed to solve, we see both classic
hurdles that have been actively investigated throughout the years and emerging trends that
only contain a small number of papers for now but will potentially have significant influences.
Classic research challenges were raised in the early days when there was little understand-
ing of designing appropriate VR user interfaces for selection and manipulation (Challenges
1-3). Researchers prototyped solutions to interact with objects in the surrounding 3D vir-
tual space, explored new design spaces and features unique to 3D interaction, and compared
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alternative solutions for the best performance and interaction experience. With a more ad-
vanced understanding of the space, the broad research challenges have been expanded to
a multitude of specific sub-areas such as target occlusion [152, 174, 198], eyes-free acquisi-
tion [111, 190, 191, 202], multi-modality integration [90, 102, 153, 197], and interaction with
virtual avatars [33, 36]. We have detailed descriptions of these challenges and their solutions
in Section 2.4.
There are also small but emerging topics in the field that are worth attention: coping with the
limitations in a user’s physical space, rendering precise visual and haptic realism to reduce
noticeable sensory mismatches, and integrating the selection and manipulation tasks into
broad contexts and workflows (Challenges 4, 5, and 8). We expect further evolution of these
research challenges and their solutions to a more mature state in the future. For example, with
the rise of the challenge of ergonomic issues, it seems that the researchers have been putting
more emphasis on designing for users themselves rather than their performance improvements.
The topic could be further extended to consider accessibility issues, where users might have
physical constraints with their bodies or environment-imposed situational disabilities (e.g., a
person holding groceries might not be able to use their arms for other tasks) when interacting
with VR systems [94, 116, 201]. We also envision the application of AI technologies and novel
research concepts to help systems better understand the environmental context and the user’s
needs and provide timely assistance [73, 126, 193] and more believable experiences [42, 166]
during VR object selection and manipulation.
Two challenges were investigated in the early days and were revisited more recently. One is
the challenge of underdeveloped evaluation methodology (Challenge 6). Though the existing
evaluation framework is still helpful in ensuring internal validity (i.e., study rigor), experi-
mental factors that could influence the study results (e.g., target size, distance, arrangement,
density, occlusion, the presence of virtual avatar, background setting, etc.) are becoming too
overwhelming to be fully-crossed in a user study. It is thus difficult to determine to what extent
the study results could be generalized to the intended applications and whether it is suitable to
compare the results across studies [13]. The other returning challenge is the limited support
for collaborative object manipulation (Challenge 7). With the growing commercialization of
VR systems, it would be advantageous if users could complete tasks that require simultaneous
manipulation of virtual contents with collocated or remote peers [53, 54, 130, 140, 180]. We
expect to see more explorations that consider the unique affordances of immersive VR head-
sets and the cooperation of multiple devices (e.g., VR headsets with AR glasses, tablets, and
desktops) in object selection and manipulation.

2.6.2 Usage of Success Measurements
According to our results, current measurements of artifacts and empirical studies center mainly
around the 5Es (effectiveness, efficiency, ergonomics, experience, and expressivity). They cover
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both objective performance measures and subjective feelings, and the solutions should also
be demonstrated to be well-suited for various use cases. These appropriate and essential
measurements pave the way for us to resolve the research challenges.
Meanwhile, considering success measurements related to robustness, consistency, and behavior
can give a more comprehensive picture of the solution. While these measures might not apply
to every scenario, we should reflect upon them when evaluating new VR object selection and
manipulation solutions. Some example questions include (1) Robustness: does the solution
remain helpful in more extreme scenarios? (2) Consistency: does the usability of the solution
increase or decay over time, either in the short term or in the long run? (3) Behavior: how
does the solution reshape user behavior? Does the solution encourage positive user behavior?
We should also note that the successful measurements may correlate or conflict with each other.
Our analysis has shown that performance measures (effectiveness and efficiency) correlated
with experience measures quite well; 76.9% of the proposed artifacts outperformed the baselines
in experience measures if they achieved better performance. In other cases, researchers and
designers might need to decide the tradeoff between the measures like speed vs. accuracy
tradeoff [133] and flexibility (expressivity) vs. efficiency tradeoff [92]. For example, while
improving performance regarding effectiveness and efficiency can be essential, it might not
be desirable if achieved at the expense of increased cognitive load [5]. Moreover, users may
prefer an interface that does not necessarily improve performance [125, 139]. These previous
findings served as helpful guides for the research in this thesis.

2.6.3 Limitations of the Literature Review
§1 Completeness. While we employed both systematic query searches and key literature
identifications to build our corpus, we acknowledge that we could inadvertently miss some
relevant papers or extended abstracts (e.g., [132]). In other words, this corpus cannot be treated
as an exhaustive and complete list of VR object selection and manipulation research. We
highlight that our goal was to identify key challenges, solutions, and success measures in the
domain, and the current corpus serves as a representative subset of the most relevant papers.
We aim to address this inherent limitation of a systematic review by making our dataset and
search queries transparent and open-source for future research to iterate and expand upon.

§2 Reality-Virtuality Continuum. In this research, we only included relevant research built with
VR headsets but not other types of VR displays. Our rationale was based on Bowman et al.’s
research [17, 98] on comparing multiple interaction techniques under different displays (i.e.,
CAVEs and HMDs). They found migration of techniques to other displays could sometimes
work but could also cause serious usability problems due to their different display properties.
Thus, it was difficult to justify whether solutions that worked on other displays could also be
transferable to VR headsets. Therefore, we restricted our scope to VR headsets for simplicity.
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Furthermore, we only investigated fully-immersive VR rather than AR and MR. Many VR
headsets offer video see-through or pass-through mode, enabling both AR and MR (e.g.,
Sutherland’s early work on The Sword of Damocles [83, 165]). We excluded them because the
presence of real-world objects may significantly influence the interactions [159]. However,
we want to highlight that solutions proposed in other VR displays and AR and MR scenarios
(e.g., CAVE, AR glasses, volumetric displays) may also be adaptable for fully-immersed VR
headsets [83, 110, 131].

2.7 Summary
We have teased out eight research challenges in VR selection and manipulation through the
literature review. In this thesis, we provide novel solutions for the research challenge of coping
with complex 3D interaction scenarios. Specifically, we develop techniques for fully-occluded
target selection (Chapter 4), incorporate gaze and on-body input to offer precise, versatile,
and more comfortable interaction (Chapter 5 and 6), and leverage computational models to
lower the friction in acquiring small and distant objects (Chapter 7). Meanwhile, our solutions
should inspire future researchers to resolve other challenges. For example, our computational
models in Chapter 7 consider optimizing the use of contextual information to provide the most
appropriate suggestions to users. We also explore a new design space for integrating gaze into
the existing workflow based on mid-air interaction in Chapter 5, and the techniques should
offer helpful support in a collaborative VR environment.
This thesis focuses on the success measurements of effectiveness, efficiency, ergonomics,
experience, and expressivity (the 5Es). For example, we evaluate the techniques through
performance measures such as task completion time and error rate. We assess workload and
fatigue measures through hand movement distances and questionnaires, including NASA-
TLX [58] and Borg CR10 [15]. We also deploy questionnaires, such as the single easement
questionnaire [147] and the short version of the user experience questionnaire (UEQ-S) [150],
and perform interviews to measure interaction experiences. We also apply the techniques to
various application scenarios to demonstrate their expressivity. These measures cover both
the objective and subjective perspectives of the interaction experience. At the same time, we
consider robustness, behavior, and consistency measures when feasible and appropriate.
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METHODOLOGY

This chapter introduces the general methodology that we applied in the research of this thesis.
Specifically, we designed and implemented our interaction techniques through design space
formulation and VR software prototyping. To evaluate the techniques, we took a human-
centered approach that considers the end user’s needs, experiences, and perspectives by
conducting multiple in-lab user studies. We describe the experiment designs and procedures
we employed to ensure the internal and external validity of the study results. We also performed
rigorous quantitative and qualitative analyses with the collected user data. Finally, we discuss
the ethical considerations when conducting user studies.

3.1 Artifact Design and Prototyping
§1 Design Space Formulation. Before building a new interaction technique, we typically consult
the design space, which refers to the structured set of possibilities in which people can interact
with the technology in a given application scenario or under specific design constraints. For
example, in fully-occluded target selection in Chapter 4, we considered different occlusion
visualizations (e.g., multiple viewports and X-rays), the size and space of the visualizations,
and different selection techniques. In gaze-supported object manipulation in Chapter 5, we
investigated a collaborative design space of the two input modalities (eye and hand), such
as how one modality can transit to the other. These design spaces (i.e., the categorization of
the different design options) helped us to consider the design trade-offs and make informed
decisions about which technique to choose in a given situation.

§2 VR Software Prototyping and Demonstration. After conceptualizing the designs, experiments,
and demonstrations, we implemented them in Unity 3D with the C# programming language.
We then deployed the software to VR platforms, such as the Oculus Quest.

§3 Simulations and Reinforcement Learning. In Article IV, we employed reinforcement learning
to identify optimized solutions in computer simulations. Specifically, we built user behavior
models that simulate how users behave under a given situation. We then employed reinforce-
ment learning agents to test different strategies by trial and error to maximize the reward (e.g.,
time saved for users) based on the simulated user behaviors.
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3.2 User Studies
§1 Design. In Articles I, II, and IV, we conducted within-subject experiments to compare
candidate solutions. In this case, each participant was tested in every experimental condition of
techniques and environmental factors (e.g., target distance and densities). The environmental
factors were tailored to the goal of the experiment and were carefully selected based on the
literature and the pilot studies. Within-subject design helped control the effect of individual
differences and increased the statistical power. We counterbalanced or randomized the testing
conditions to mitigate the potential ordering effect caused by such designs. We also repeated
each condition for multiple trials to improve the reliability (i.e., the resulting data accurately
represented the “true” performance).

§2 Procedure. Our in-lab user studies were typically structured as follows. We first welcomed
the participants to the experiments and requested them to fill in a pre-experiment questionnaire
to collect their demographic information, including, for example, whether they had normal or
correct-to-normal vision and their familiarity with VR equipment. We then introduced and
helped them to wear the VR device and let them get acquainted with the system in a sample
virtual space. We then required them to practice the interaction techniques and proceed to the
formal experiment. After the experiment, we asked them to complete another questionnaire
on their experience and, in some cases, also conducted an interview. We ensured participants
rested enough during the study to prevent user fatigue or disengagement [199].

§3 Interview. We performed semi-structured interviews in Articles I-III to gather user feedback
on the proposed solutions. We prepared a list of questions to ask before the experiment and
probed into more details based on participants’ answers. These interviews helped to understand
the users’ impressions and concerns, which were employed to iterate on our designs.

3.3 Data Analysis
We conducted quantitative analyses to determine whether our proposed solutions have sig-
nificantly improved the intended objectives (e.g., completion time). We also administered
qualitative analyses regarding users’ feedback to advance our designs.

3.3.1 Quantitative Analysis
We performed quantitative analyses on the experimental data in Articles I, II, and IV.

§1 Metrics. The quantitative evaluation metrics centered around the 5E measurements of
effectiveness, efficiency, ergonomics, and experience. We included selection time, manipulation
time, error rate, and more detailed metrics of coarse translation time and re-position time for
measuring effectiveness and efficiency. We also used hand movement distance, hand rotation
angles, Borg CR10 [15], and NASA-TLX scales [58] for estimating user workload and fatigue.
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Moreover, We quantified user experience through preference rankings, function usage percent-
age, and UEQ measures of pragmatic, hedonic, and overall quality [150]. These measurements
encompass both the objective and subjective aspects of the interaction experience.

§2 Outlier Removal. If time performance data were collected in the experiment, We typically
considered the time above or below three standard deviations from the mean (𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑.) in
each condition as outliers and discarded them in the analysis. These outliers could be induced
by the confusion or mind-wandering of the participants.

§3 Tests of Significance. We conducted statistical significance tests with repeated-measures
ANOVA (RM-ANOVA) in Articles I and II and linear mixed models (LMM) in Article IV. Both
RM-ANOVA and LMM were used to identify a significant effect of a factor on a dependent
variable, such as selection time (i.e., whether the chance that a factor has an impact on the
dependent measures is below a threshold). RM-ANOVA was applied when the within-subject
factors were fixed (i.e., the same levels were applied to each subject).
Before conducting the significance tests, we validated the normality hypothesis through
Kolmogorov-Smirnov tests, Shapiro-Wilk tests, and visual inspections. If the data appeared
non-normally distributed, we performed transformations such as aligned rank transformation
(ART) [187] to normalize the data. We also adjusted the degrees of freedom with Greenhouse-
Geisser correction, if appropriate. Additionally, we performed Bonferroni-adjusted pairwise
comparisons to identify whether the factor levels were significantly different from each other.
These analyses were common practices in the field.

§4 Complementary Tests. In addition to the significance tests, we employed effect size measures
such as the non-parametric estimator of CL [171] to complement the pairwise comparison
results. Effect size helped us understand the magnitude of differences between the conditions,
which could not be achieved by statistical significance tests alone [164].

3.3.2 Qualitative Analysis
In Articles I-III, we conducted qualitative analyses on the interview data gathered from the
participants. We transcribed the interview data and coded the issues raised by the users in a
thematic manner that concerns the frequency and importance of the issue being mentioned. In
other words, we emphasized those issues that appeared more frequently or were recognized as
fundamentally important [2, 37]. We then inferred possible casual conditions of the occurrence
of the issue and elaborated on our findings on papers. These qualitative analyses help us focus
on key user experience issues of the invented techniques, which can improve understanding
of interaction behaviors and guide future research.
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3.4 Ethical Considerations
We implemented several measures to guarantee the ethical conduct of the research studies in
this thesis. The experiment protocol was approved by the University of Melbourne Human
Ethics Advisory Group (Article I and III, ethics ID: 1955876), the University Ethics Committee
in Xi’an Jiaotong-Liverpool University (Article II), or the Western Institutional Review Board
(Article IV).

§1 Informed Consent. We informed the participants of study-related information via a written
plain language statement. Before they agreed to participate in the study, they were given
sufficient time to read a consent form. Their consent was obtained by having them sign and
return the consent form. The experiment and data collection only started once the participant
signed the consent form. Additionally, we ensured that the participants were aware that their
participation would not impact their grades if they were students at the university.

§2 Risks, Compensations, and Monitoring. We were aware of the potential risks in a VR ex-
periment, such as causing motion sickness and eyestrain. Participants were informed of the
possible adverse effects. They were allowed to take off the VR headsets if feeling uncomfort-
able. Further, they could withdraw from the study at any point of the experiment without
explanation or prejudice. The researcher also carefully monitored the whole experiment to
spot any potential risks. After completing the study, the participants were compensated with
rewards such as gift vouchers and snacks, as written and agreed upon in the consent form.

§3 Data Management. We collected only the necessary data for our research, such as basic
demographic information, task completion time, and oral feedback. To maintain privacy, we
anonymized the collected user data so that it is impossible to link them with identifiable per-
sonal information (e.g., names). In any publication resulting from the research, the participants
were identified by pseudonyms such as “P1”. For safeguarding the data, we utilize secure
servers protected by firewalls. Access to the server was controlled through protected password
authentication mechanisms.
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FULLY-OCCLUDED TARGET SELECTION

4.1 Summary
In this work, we propose interaction techniques for fully-occluded target selection in VR.
The presence of fully-occluded targets is common within virtual environments, ranging from
a virtual object behind a wall to a data point of interest hidden in a complex visualization.
However, current mid-air interactions based on Virtual Hand and Raycasting have limited
functionalities in selecting such targets without repetitively moving from one place to another
(locomotion) to discover the occluded target. Therefore, we developed ten techniques and
conducted two user studies to explore appropriate visualizations and interactions to offer
selections for fully-occluded targets.
The proposed fully-occluded target selection techniques can deal with small, distant, and
partially- or fully-occluded targets. The selected techniques were optimized for effectiveness,
efficiency, and user experience. They were also demonstrated to remain helpful in simple and
more complex environmental settings (e.g., different occlusion layers, target depths, and object
densities) and various application scenarios (e.g., 3D modeling and data exploration).

Env. Task
Small Distant Occluded Effectiveness Efficiency Ergonomics Experience Expressivity
✓ ✓ ✓ ✓ ✓ ✓ ✓
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Fully-Occluded Target Selection in Virtual Reality

Difeng Yu, Qiushi Zhou, Joshua Newn, Tilman Dingler, Eduardo Velloso, Jorge Goncalves

Abstract—The presence of fully-occluded targets is common within virtual environments, ranging from a virtual object located behind
a wall to a datapoint of interest hidden in a complex visualization. However, efficient input techniques for locating and selecting
these targets are mostly underexplored in virtual reality (VR) systems. In this paper, we developed an initial set of seven techniques
techniques for fully-occluded target selection in VR. We then evaluated their performance in a user study and derived a set of design
implications for simple and more complex tasks from our results. Based on these insights, we refined the most promising techniques
and conducted a second, more comprehensive user study. Our results show how factors, such as occlusion layers, target depths,
object densities, and the estimation of target locations, can affect technique performance. Our findings from both studies and distilled
recommendations can inform the design of future VR systems that offer selections for fully-occluded targets.

Index Terms—Pointing selection, object selection, visualization, occlusion, virtual reality, hidden target, head-mounted displays

1 INTRODUCTION

Virtual reality (VR) enables users to achieve what may not be possible
in the physical world. Though many user interfaces have been devel-
oped for simulating or adapting real-world features (such as providing
realistic tactile feedback [5]), it has long been argued that the real
power of VR lies in creating a “better” reality by utilizing “magical”
techniques that while being unrealistic, provide a better user experi-
ence [1, 46, 63, 65, 67]. One primary advantage of such interaction
techniques is to overcome human limitations in terms of cognitive,
perceptual, physical, and motor capabilities [46]. For example, ex-
isting techniques enable the user to interact with distant objects [78]
and teleport around virtual environments [37], which are impossible
in the physical world. This research focuses on one such interaction—
selecting fully-occluded targets in VR.

The challenge of interacting with fully-occluded targets is prevalent
within virtual environments. Structural elements, like walls, can easily
hide and prevent users from accessing the objects behind them [23,
47, 79] (see Figure 1). In another example, high-dimensional data
visualizations are also likely to obscure a datapoint of interest from
being acquired by analysts [6, 20, 54, 76]. Further, when building 3D
models in virtual environments, it might be cumbersome to select and
thus manipulate hidden components, such as an engine hidden inside a
virtual model of a motor vehicle [4].

However, existing selection techniques in VR are limited in their
effectiveness for selecting fully-occluded targets. Based on the avail-
able literature on the topic, we argue that the main challenges are (1)
the deficiency of the formulation of the problem in VR and general
strategies to solve it; (2) the lack of effort in combining 3D occlu-
sion management techniques to facilitate the discovery phase of the
selection process [3]; and (3) the absence of a thorough evaluation and
comparison of techniques that manipulate the key factors related to
fully-occluded target selection. We aim to fill these gaps in this paper.

We first formulate the fully-occluded target selection problem and
frame an approach to address it. We then derive a design space, which
inspired seven potential techniques for selecting fully-occluded targets
in VR. We present a user study that compares these techniques based on
both simple and complex tasks. Based on the study results, we refined
the more promising techniques and introduced a second, more in-depth
study aimed at assessing technique performance under different en-
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Fig. 1. Example Scenario: A user is constructing an environment in VR
and intends to select and manipulate a hidden tree (outlined in orange)
that is fully-occluded from the view of the user.

vironmental factors including occlusion layers, target depths, object
densities, and the estimation of the target locations. Following, we
discuss the findings from both studies and suggest recommendations
to inform the design of future VR systems that offer selections for
fully-occluded targets.

2 PROBLEM FORMULATION AND GENERAL STRATEGY

Considering previous work regarding the occlusion problem in 3D
environments [31], we formulate the problem space and propose a
general problem-solving strategy for the selection of fully-occluded
targets in head-mounted display (HMD)-based VR systems.

Within a 3D virtual environment, there are selectable, and unse-
lectable objects. Users can pick up or interact with the selectable
objects, but not the objects that are unselectable since they serve other
purposes within the virtual environment, such as decoration to enhance
the realism of the scene. Among the selectable objects, there is com-
monly one primary target that the user intends to interact with, while
all the selectable objects act as distractors. The target can switch when
the user’s intention changes. A target is defined to be fully-occluded
from a viewpoint if it can not be seen from any viewing direction of
the user. Different objects within a virtual environment can become
fully-occluded at some point during the interaction.

To select a fully-occluded target, the user needs first to form an
intention. With that intention, although the user cannot directly see
the target at this stage, they typically have an awareness of the areas
where it might occur—we call them occurrence areas. The estimated
size of the occurrence area depends on the user’s confidence. If the
user has no idea of where the target might locate, the occurrence area



Fig. 2. To select fully-occluded targets, a user 1) forms an intention. The
user is then provided with 2) visualization of the objects, 3) an optional
disambiguation technique to spread the clustered objects, 4) an indicator
of the current pointing object (e.g. highlighting), 5) a selection trigger to
confirm the selection, and 6) feedback (e.g., visual, sound, haptic) after
selection.

is the whole visualization. After that, the user can use a supporting
technique to “locate” the fully-occluded target and then pinpoint the
target to perform the selection.

In line with the problem space discussed above, we propose a general
strategy to tackle the fully-occluded target selection problem. Once
a user has a selection intention, a visualization of the target needs
to be displayed to make it “visible” to the user from their viewport.
However, as the technique will not know which object the user is aiming
at, a group of potential objects, possibly within the user’s estimated
occurrence areas, will be presented. Next, the technique helps the user
to disambiguate the list of selectable objects and provides activation
feedback when an object is being pointed at. Finally, the technique
should allow the user to select an object by pressing a trigger and
receive confirmation feedback. The general strategy described above
for selecting fully-occluded targets is summarized in Figure 2.

3 RELATED WORK

In this section, we first introduce previous work regarding occluded
target selection in VR. We then present the techniques related to visu-
alization and selection, which are the two main steps in our general
problem-solving strategy.

3.1 Occluded Target Selection in VR

Previous research in VR has explored object selection under cluttered
and occlusion conditions, mostly for partially-occluded targets. One
successful technique is Depth Ray [38], which attaches a movable
marker onto the selection ray. The object intersected by a ray and
closest to the marker can be selected. In another study, Depth Ray
was shown to be effective for selecting a target that was completely
occluded by making the objects adjacent to the ray semi-transparent
[72]. However, the target was first visible to the user for 2 seconds
before it got fully-occluded by distractors, which is unlikely to be the
case in real applications. Furthermore, only one layer of occlusion
was introduced, and the target shape was different from the distractors,
which made the task much simpler. In real scenarios, multiple layers
of occlusion can be presented, and the target can also be similar to
the distractors [54]. Future work has refined [11], and applied similar
techniques for collaborative work [2] and object manipulation [57].

Some techniques try to separate objects in a cluster by translating
them into new positions. For example, Flower Ray uses a two-step
approach: the user first point at an object cluster through a virtual ray,
and then press to trigger to separate them into a marking menu [38, 44].
An updated version of Flower Ray uses a fixed-size cone to replace the
ray to avoid missing small targets [26]. Both techniques have not been
tested under dense conditions, where objects could still be partially- or
fully-occluded even if they are translated to new positions.

Progressive refinement techniques that take the advantages of rear-
ranging the objects in a more organized way, commonly into a new view,
can also be suitable for selecting fully-occluded targets. SQUAD [7,42]
allows users to cast a sphere onto multiple objects and interactively
narrow down their selections using a quad-menu. Another technique
called Expand [9, 18, 19] (not in VR HMD) enables users to zoom
into the target area and reorganize the objects onto a grid for a second
phase selection. Expand was shown to perform faster than SQUAD
in dense environments. Later works extend such techniques by using
a mobile touchscreen as input [25] and arranging objects in different
layouts (circular layout rather than a grid) [49, 56]. However, none of
them have been formulated under the context of fully-occluded target
selection, nor have they been thoroughly compared to other techniques
presented in this section. Nevertheless, we drew inspiration from these
techniques when developing our techniques for fully-occluded target
selection in VR.

There are some other techniques that are promising for selecting
fully-occluded targets: flexible pointer [51] uses a curved ray which
could bypass the distractors, iSith [77] determines the target by using
the interaction point of two rays, VirtualGrasp [78] retrieves an object
by simulating the gesture as if grasping the target object, X-Ray Vi-
sion [40] reveals hidden content by looking at a ”scaffolding pattern”,
and Outline Pursuits [64] selects an occluded target by matching its out-
line with smooth pursuit eye movement [73]. While these techniques
provide interesting concepts, substantial tweaks would be needed for
them to be suitable for general fully-occluded target selection scenar-
ios. For example, VirtualGrasp [78] can not deal with objects with an
identical shape.

We summarise the following three gaps in the literature:

• The fully-occluded target selection problem has not been established
in VR. Previous work normally assumed that the target location was
known or only partially hid the target. In addition, important factors,
such as layers of occlusions, were not identified.

• Limited work has tried to combine occlusion visualizations to sup-
port the discovery phase of the targets, as they mainly focus on the
selection phase. However, as fully-occluded targets can cause some
uncertainties with their locations, visualizations that help with the
search phase are essential.

• A thorough evaluation and comparison of different types of tech-
niques that could be potentially used for fully-occluded target selec-
tion are missing.

3.2 3D Occlusion Visualization
Elmqvist and Tsigas reviewed fifty 3D occlusion management tech-
niques for visualizations [31] and extracted five design patterns from
these techniques. Next, we highlight important work in the three pat-
terns that are more relevant to our research.

Multiple Viewports. The multiple viewports pattern is characterized
by embedding alternate (often separate) viewports/windows to the main
view. Examples include World In Miniature (WIM) [67, 70], which
generates a small, handheld copy of the entire world, and Worldlets [33],
which inserts multi-perspective viewpoints of an environment into
the main view [13, 58, 76]. Recent work presents 3DMini-map [79],
which helps to convey distance and direction information of off-screen
and occluded targets. However, selecting objects directly on these
visualizations is still underexplored.

Virtual X-Ray. The virtual X-ray pattern makes objects visible by
turning occlusion surfaces invisible or semi-transparent. Making front
objects transparent can benefit the discovery of objects that hide behind
[27,30,41,68,82]. However, it is known to suffer from the “Superman’s
X-ray vision” problem [48]—when there are too many occlusion layers,
users are not able to make sense of the depth relationships of objects.
Others have explored a cutaway view [16, 23, 28, 34], which eliminates
or cuts holes over unwanted distractors.

Volumetric Probes. Volumetric probes normally use a probe to trans-
form objects by removing or separating them. The above-mentioned dis-
ambiguation techniques, which reorganized potential targets on a new



view [74], could be counted as one substream. Other techniques have
attempted to scale [22], translate [8, 15, 29, 32, 55], and distort [17, 24]
objects in the scene in order to reveal the hidden objects. The transfor-
mation of the object needs to be carefully controlled so that the object is
not occluded by new distractors, especially in a dense environment [32].

3.3 Selection Techniques in VR
There are two main categories of selection techniques in VR: virtual
hand and virtual pointing [3]. Since a plethora of techniques have been
proposed under those two categories, we direct interested readers to
surveys on the topic [3, 46], and more recent works [11, 12, 71, 80].
RayCasting [11, 50] it is one of the most common techniques for 3D
object selection in virtual environments. In RayCasting, a visible ray
emanates from the tracked hand position to the direction of where the
hand is pointing at, and the first object that is intersected by the ray can
be selected [46]. Despite its usefulness, the performance of RayCasting
deteriorates when selecting distant or small objects. Researchers have
been actively seeking solutions to enhance its performance, especially
in dense environments [36, 72]. Recent work has compared different
visual feedforwards for RayCasting and suggests that highlighting
the nearest target was the most efficient way in terms of selection
performance [11]. Another approach is to try to minimize input noise
with the use of algorithms and computational models [11, 80]. We
utilized some of the techniques mentioned above to strengthen our
fully-occluded target selection techniques. We illustrate this aspect in
more detail in the description of the developed techniques.

4 DESIGN SPACE

Our general strategy for selecting fully-occluded target suggests that
the problem can be solved in five steps (visualization, disambiguation,
activation, selection, and feedback). Here, we focus on the three main
steps, which are visualization, disambiguation, and selection. We
maintain the other two the same across all the techniques. The activation
indication was provided by outlining the target, and the confirmation
feedback was given by sound. Regarding the three focused steps, we
have identified the following six primary considerations for designing
fully-occluded target selection techniques.

Visualization Patterns: which type(s) of the visualization pattern,
among the ones that are identified by Elmqvist et al. [31] (typically
multiple viewports, virtual X-ray, and volumetric probe) is/are utilized
to visualize the target?

Visualization Size: what is the size of the visualization area? Are we
applying the visualization to only limited areas, or more extensive areas
(even the whole environment)? For instance, to visualize the objects,
we can make a small area transparent, however, we can also tweak the
whole scene to do so.

Visualization Versatility: will users be able to specify which area(s)
they want to apply the visualization? How precise can it be (in an
arbitrary shape or a constrained region)? In real use cases, the users
will have different estimations of where the target might occur, thus it
is important to define their belief/guess accurately.

Disambiguation Invariances: when applying the disambiguation
technique, which property (or properties) of the original objects will
be maintained? These properties may include object position, size,
relation, and appearance. For example, if we are asked to select a
datapoint among other datapoints that have the same appearance, re-
arranging all of them into new positions might not be ideal.

Selection Techniques: what type of selection techniques will be
applied? Are we embedding selection enhancement techniques or filter
out the noisy input? These decisions are likely to be highly related to
selection performance. In the initial exploration, we mainly focus on
the selection techniques that are based on pointing (Raycasting) and
virtual hands without adding selection enhancements.

Input Modality: which input modality (modalities) are used for
selecting the fully-occluded target? While many types of input modality
exist (voice, gaze, gesture, etc.), we focus on controller input. A
survey of currently available controllers on the market showed that
most controllers were equipped with at least a touchpad or a joystick (2
degrees-of-freedom input, 2DOF), a trigger (1DOF input), and buttons

(only on/off). The controller itself can be 3DOF (only rotation can be
detected) or 6DOF (both rotation and translation can be recognized).
Different techniques might need to employ different inputs. In our
research, we used a joystick, a trigger, and a button of an Oculus Touch
controller throughout the studies. The design space can be expanded
in the future when investigating other input modalities to achieve the
functionalities of each technique (e.g. hand-tracking).

5 POTENTIAL TECHNIQUES

Based on the design space, we developed the following nine potential
techniques with several iterations and pilot tests. These techniques are
summarized and visualized in Figure 3. The following technique de-
scriptions adhere to the design space. For an explicit mapping between
the design space and the techniques, please refer to our supplementary
materials.

Alpha Cursor: this technique is inspired by previous work that
attaches a movable cursor onto the selection ray [11, 38]. With Al-
phaCursor, users control the cursor to come closer or go deeper into
the environment at a constant speed by pushing the joystick forward
or backward (see Figure 3b). In contrast to previous work, if the
distance between the cursor and the user is larger than the distance
between an object to the user, the object becomes fully transparent.
The transparency manipulation is applied to the whole environment,
and all objects maintain their original position and size during the dis-
ambiguation phase. RayCasting, which uses the trigger for selection
confirmation, then selects the desired object.

Flower Cone: in FlowerCone (see Figure 3c), users select objects in
two phases. First, the user controls a cone to match the estimated area
of where the target might occur. The size of the cone can be adjusted
by tilting forward/backward the joystick. When pressing the trigger,
the user enters the second selection phase, in which all objects within
that cone are presented on a grid. The user can select the target directly
on the grid with RayCasting, or, if the target is not on the grid, the
user can press the button to go back and resize the cone again. This
technique combines visualization and disambiguation by using the grid
layout. The visualization size can be controlled through the size of the
flat circular base of the cone. However, the grid layout changes the
original location and size of the object.

Gravity Zone: as shown in Figure 3d, GravityZone translates all
objects in the scene to come closer or further away in a constant speed
by tilting the joystick forward or backward. If the distance between
an object and the user is smaller than a threshold, the object will be
fully transparent. It is similar to AlphaCursor in that both of them
make the objects transparent based on their relative depth. However,
in contrast to AlphaCursor, GravityZone manipulates all the objects in
the scene rather than the cursor. The location and size of the objects are
changed during the translation, but their relative position is not altered.
Raycasting is used to make the selection.

Grid Wall: inspired by Expand [19], in this technique, when the user
presses the controller button, all objects are arranged on a grid (see
Figure 3e) with a constant scale factor. We did not use the zoom-in
feature from Expand as it can make participants dizzy in VR. GridWall
completely reorganizes all objects in the scene to a new location with a
different size. The user can select the target on the grid with RayCasting.
The original location information of the object is temporarily lost with
the grid layout.

Lasso Grid: with LassoGrid, users draw a trace in any shape by
long-pressing the trigger (see Figure 3f). All objects within the trace,
are presented on a grid layout when releasing the trigger for the second
stage of selection. If the trace is not closed, the program completes
it automatically. RayCasting is used to select the target on the grid.
Pressing the button allows the user to go back and draw the trace again.

Magic Ball: inspired by previous work [79] (which only explored
visualization rather then selection), MagicBall removes unselectable
distractors and creates a 3D mini-map of all the selectable objects inside
a transparent sphere (see Figure 3g). The objects’ size and the distance
between each other are both scaled-down, but the relative size and
location information are both maintained. The user can select directly
on the semi-transparent object proxies by moving the tip of the virtual



Fig. 3. The RayCasting technique (a) and techniques devised for fully-occluded target selection, including Alpha Cursor (b), Flower Cone (c), Gravity
Zone (d), Grid Wall (e), Lasso Grid (f), Magic Ball (g), and Smash Probe (h).

stick onto the proxy and pressing the trigger. The user can also rotate
and translate the mini-map by tilting the joystick.

Smash Probe: if more than one object intersects with the ray, Smash-
Probe spreads these objects to a random direction within a fixed range
(see Figure 3h). It only alters a small area per spread; however, multiple
spreads can disarray the whole environment. The objects are translated
back to their original position after a pre-defined time. RayCasting is
used for selecting objects, and the user can disable or re-enable the
spread function by pressing the button.

Depth Ray (discarded): previous work [38, 72] has described Depth
Ray, which attaches a depth marker onto the selection ray. The objects
that are close to the ray are rendered as semi-transparent so that the
occluded targets could become visible. The one that is closest to the
marker can be selected. However, during the pilot testing, we found
that users were not able to distinguish the target and the distractors
when multiple occlusion layers showed up using this technique, even
with semi-transparent and border highlighting. Thus, we discarded this
technique from the study.

Fly-Through (discarded): the technique allows users to fly through
any objects and navigate freely across the virtual environment. How-
ever, following our pilot testing, it became clear that this technique
was not efficient for this purpose and could cause motion sickness, and
therefore, we also discarded this technique from the study.

All our techniques introduce a superimposed selection mode, which
removes the unselectable objects in the scene for the simplicity of
selectable target acquisition. While conducting user studies to opti-
mize each technique was not feasible, and outside the scope of this
research, we tuned all of their variables to the best of our ability during
informal testing. The values of the variables are made available in our
supplementary materials for replication purposes.

6 EVALUATION FRAMEWORK

6.1 Variables of Interest
We identified a set of factors that we hypothesized could impact the
techniques’ performance for fully-occluded target selection. As sug-
gested by Fitts’s law [35, 66], target size and movement amplitude are
likely to have a significant effect on selection performance. However,
rather than replicating the findings from the extensive previous work on
the topic, we consider variables that are related to occlusion properties.
These variables are:

• Occurrence Area. As discussed before, a user normally has an
awareness of where a fully-occluded target might be located. The
more uncertain the user is, the larger the occurrence area might be.

Different sizes of the occurrence area is likely to influence the target
searching time.

• Occlusion Layer. It specifies the number of selectable objects that
can fully overlap the target from a user’s point of view. It is more
challenging for the user to find the target when more occlusion layers
are present.

• Environmental Density. It is the number of selectable objects in the
whole virtual space. Although some of them might not hinder the
selection performance directly, it can cause distraction and are quite
likely to appear in real application scenarios (unwanted objects are
spread across the whole environment).

• Target Depth. It is the distance between the target and the user. A
higher target depth value can make the target appear smaller to the
user and raise more challenges for selection.

• Density Space. Density space [21, 38] offers more precise control
of the object density within the target area. Similar to previous
research, we place six distractors around the target (front, behind, up,
down, left, and right). Density space is the distance between the six
distractors surrounding the target.

6.2 Experimental Setup
To frame the experimental task for this research, we first consulted
the past literature regarding target selection in 3D space. Existing
tasks with perceivable patterns (e.g., [11, 66, 69, 81]), which users were
required to select a set of fixed targets in a constant sequence, are
not applicable in our case. This is because we wanted to vary the
occurrence areas, which requires some randomness in the allocation
of the target. Meanwhile, tasks based on interaction scenarios with
the presence of some degree of unexpectedness, such as a game [19],
might pose challenges to the control of variables. We decide to use
more controlled tasks, which would still allow the randomization of
target locations (such as [7, 38, 45, 53, 72]). However, as there is little
work regarding fully-occluded target selection, we had to develop a
new and reusable experimental task. Based on previous research, we
designed the task as follows.

In the task, the user aimed to select a fully-occluded target among a
set of distractors in a virtual environment. The target and the distractors
had different colors, and the colors were generated from a pre-prepared
list (we used seven colors in our case which were chosen to be easily
distinguishable, see Figure 4). The task was divided into two phases:



Fig. 4. Demonstrations of the experimental testbed including sparse
environment first-person view (a) and third-person view (the square
indicates where the user should stand) (b) and dense environment first-
person view (c) and third-person view (d).

preparation and formal trial. During the preparation stage, the user
started by pointing at a fixed home object, which had an identical color
as the goal target. The home object ensured that the ray started from
the same direction in the formal trial, and the user could press the
selection trigger to proceed to the formal trial. During the formal trial,
the objects, including both a target and distractors, and an indicator
of where the target might be located (the occurrence area, marked as
white in Figure 4a, c) were generated. The occurrence area could show
up in any direction related to the home object, but the distance between
them was always the same in our setting. The user then needed to use
the corresponding input technique to select the target. We envision that,
by modifying the variables of interest mentioned above, this task can
capture a broad range of interaction scenarios in real cases.

7 STUDY 1 – INITIAL EXPLORATION

We conducted an initial exploration and evaluation of the seven potential
techniques for selecting fully-occluded targets in virtual environments.
We aimed to extract design features that perform well in different
interaction scenarios and determine potential aspects of our techniques
that might need refinement.

7.1 Participants, Apparatus, and Materials
We recruited 21 participants (13F/8M), aged between 19-39 (M = 24.5
± 4.3) with a diverse set of educational backgrounds (economics, arts,
law, engineering, etc.) from a local university campus. All participants
had normal or corrected-to-normal vision and rated their familiarity
with VR as moderate (average 3.0 ± 1.6 out of a 7-point scale). Par-
ticipants wore an Oculus Rift CV headset and interacted with our
application through an Oculus Touch wireless controller.

7.2 Design and Procedure
The study employed a within-subjects design where we compared the
performance of the seven developed techniques: (AlphaCursor, Flow-
erCone, GravityZone, GridWall, LassoGrid, MagicBall, and Smash-
Probe). The techniques were tested on two levels of task complexity
(low and high). The higher complexity task had much larger occurrence
areas, more occlusion layers before the target, higher environmental
density, higher target depths, and larger density space than the lower
complexity one. We ensured that there were considerable differences
between the two levels of complexities—the detailed parameters are
provided in the supplementary material. The order of the techniques
was counterbalanced using a Latin Square approach, and the order of
complexities was randomized. Following recommendations from previ-
ous work on target selection performance [53], we used two subsequent

tasks (search and repeat). The search task required users to search for
one target in a new scene and then select it, while the repeat task asked
users to select the same target in the exact same scene.

We collected both performance data and subjective feedback from
participants. Both selection time (the elapsed time between when the
objects appear and when the selection is made) and error rate (the
percentage of error trials for each condition) were recorded. We also
measured the easiness of the techniques with the Single Easement
Questionnaire [60] and the intrusiveness caused by them [52] on a
7-point scale. In addition, we asked participants to provide their prefer-
ence ranking after finishing each technique and optionally also provide
free-form feedback. We monitored the experiment from a computer,
which showed the user’s current view in VR, to observe the use of the
techniques.

The whole procedure lasted around 40 minutes for each participant.
At the beginning of the study, participants were briefed about the
purpose of the research and signed a consent form. They also completed
a pre-experiment demographic questionnaire. After that, they were
introduced to the VR device and the experimental task, where we
required them to finish as fast and as accurately as possible. They
then wore the VR headset and familiarised themselves with the virtual
environment. Next, they proceeded to the formal experiment within
a fixed physical area. The experiment was divided into seven parts
(corresponding to the evaluation of seven techniques). In each part,
there were three phases: practice, perform formal trials, and answer
questions. In the practice phase, participants were taught about how to
use the technique, and they could practice it as long as they wanted until
they got familiar with it. They then completed a series of formal trials.
Finally, they were asked to complete the questionnaires mentioned
above. Participants were allowed to rest between each condition. They
were compensated with a $10 voucher at the end of the study.

7.3 Performance Results
In total, we collected 4704 data points (21 participants × 7 techniques
× 2 complexities × 2 tasks × 8 repetitions) from the experiment. To
analyze selection time, we discarded trials in which participants made a
wrong selection (374 error trials, 8.0%), and removed outliers, in which
the selection time was above three standard deviations from the mean
(mean+ 3std.) in each condition (92 trials, 2.0%). Such outliers are
typically removed as they are likely to not represent the typical selec-
tion performance (e.g., small distraction during the experiment), and
can skew results in a particular condition [72, 80]. The data regarding
selection time were shown to be normally distributed (evidence from
Kolmogorov-Smirnov tests and visual inspections), while the error
rate data were not normally distributed and underwent pre-processing
through Aligned Rank Transform (ART) [11, 75]. Next, we performed
a repeated-measures ANOVA (RM-ANOVA) and Bonferroni-adjusted
pairwise comparisons in each experiment scenario to analyze the selec-
tion time and error rate in each experimental condition1. The degrees
of freedom produced by RM-ANOVA regarding selection time was
adjusted using Greenhouse-Geisser correction. Both results are sum-
marized in Figure 5.

7.3.1 Search Task - Low Complexity
TECHNIQUE was shown to exhibit a significant main effect on selection
time, with a large effect size (F2.893,57.869 = 22.516, p < .001,η2

p =
0.530) in low-complexity search task. GravityZone was the fastest, be-
ing significantly faster than most techniques (p = 0.036 for AlphaCur-
sor and p < .001 for others) except GridWall (p = .219).

There was a statistically significant difference between TECH-
NIQUES regarding error rates (F6,120 = 3.710, p = .002). Post-hoc
analysis indicated that FlowerCone had a significantly higher error rate
than AlphaCursor (p = .003) and GravityZone (p = .002).

7.3.2 Search Task - High Complexity
TECHNIQUE had a significant main effect on selection time, with a large
effect size (F3.221,64.425 = 13.276, p < .001,η2

p = 0.399). GridWall
1For readability, we here report statistics in APA style (6th Edition). For the

exact p-value when p < .001, please refer to the supplementary material.



Fig. 5. Plots of selection time for the seven potential techniques regarding the search task with low complexity (a) and high complexity (b) and the
repeat task with low complexity (c) and high complexity (d). Error bars indicate the 95% confidence interval. Statistical significant effects are marked
(* = p < .05, ** = p < .01, and *** = p < .001). Plots of error rate for the techniques regarding the search task (e) and the repeat task (f).

was the fastest technique for the complex task. It was significantly faster
than AlphaCursor (p = .017), GravityZone (p = .002), MagicBall
(p < .001), and SmashProbe (p < .001). There was no statistically
significant difference when compared to FlowerCone (p = .362) and
LassoGrid (p = 1.000).

There was a statistically significant difference between TECH-
NIQUES regarding error rates (F6,120 = 3.204, p = .006). Gravity-
Wall was shown to have significant lower error rate than MagicBall
(p = .001).

7.3.3 Repeat Task - Low Complexity

TECHNIQUE was found to have a statistically significant effect on
selection time, with a large effect size (F2.379,47.581 = 26.061, p <

.001,η2
p = 0.566). GravityZone took the least time for selection when

compared to most other techniques (p < .001), except Al phaCursor
(p = .078).

There was no statistically significant difference between TECH-
NIQUES regarding error rates (F6,120 = 0.945, p = .466).

7.3.4 Repeat Task - High Complexity

TECHNIQUE was found to have a statistically significant effect on
selection time, with a large effect size (F3.282,65.646 = 18.412, p <

.001,η2
p = 0.479). LassoGrid was the fastest, but was similar to

FlowerCone and GridWall (p = 1.000). LassoGrid was significantly
faster than Al phaCursor (p = .031) and the remaining techniques
(p < .001).

There was a statistically significant difference between TECH-
NIQUES regarding error rates (F6,120 = 6.491, p < .001). AlphaCursor
(p = .018) and GravityZone (p < .001) had much lower error rates than
MagicBall. GravityZone led to less error than SmashProbe (p = .029).

7.3.5 Search Task vs. Repeat Task

In terms of selection time, most techniques (all p < .003) had signifi-
cant improvements in the repeat phase of the low complexity condition
except GridWall (p = .405) and MagicBall (p = .057). For high com-
plexity condition, there was no statistically significant effect of task on
selection time for GridWall (p = .970) and SmashProbe (p = .143), but
there was for all the others (MagicBall: p = .031 and others: p < .001).

Regarding error rates, only MagicBall (p = .035) and SmashProbe
(p = .043) improved in the low complexity condition. No significant
difference was revealed in the high complexity condition (all p > .050).

7.4 User Feedback Results

The overall easiness and intrusiveness of the techniques were calculated
by averaging the 7-point Likert scale results. We also computed the
mean ranking and counted the number of first/second place for each
technique. The results from both questionnaires are summarized in
Table 1.

In terms of the free-form feedback, the comments were mostly
focused on GridWall, MagicBall, and SmashProbe. Several participants
(N=7) felt GridWall was somewhat ”boring” because it simply arranged
all the objects in a 2D grid. In contrast, SmashProbe was seen as ”fun”
to use (N=4). Some participants thought MagicBall provided a good
overview of the objects (N=4) but was quite difficult for selecting the
target when the object number was high (N=3).

Table 1. The mean value (standard error) of easiness rating, intrusive-
ness rating, and preference ranking for all the techniques in Study 1. The
last column shows the number of times a technique is ranked as the
first/second. For Easy, higher is better; for Intrusiveness and Rank, lower
is better.

Technique Easy Intrusiveness Rank #1/2

AlphaCursor 5.38 (0.33) 1.90 (0.34) 4.05 (0.41) 2/3
FlowerCone 5.81 (0.27) 1.95 (0.36) 3.38 (0.43) 4/3
GravityZone 5.86 (0.27) 1.76 (0.26) 3.05 (0.35) 5/3
GridWall 6.33 (0.16) 1.57 (0.36) 3.48 (0.42) 6/1
LassoGrid 5.76 (0.22) 1.86 (0.26) 3.86 (0.40) 1/7
MagicBall 4.33 (0.37) 3.19 (0.39) 5.19 (0.41) 0/3
SmashProbe 4.76 (0.34) 3.10 (0.28) 5.00 (0.47) 3/1

7.5 Summary and Discussion

The results show that performance improved for most techniques when
participants moved from the search task to the repeat task. This is
particularly true for the complex tasks, where selection time was sig-
nificantly shortened in the repeat task. However, GridWall did not
gain an advantage from the repeated selection, as the object order was
randomized on the grid. SmashProbe did not improve significantly in
the high complexity condition during the repeat phase. The selection
phase of these techniques took a significantly longer time to complete
when compared to the searching phase. As the repeat task was a replay
of the previous task, the learning effect can also reduce the selection
time and help users correct errors. Interestingly, the ranking of the
techniques based on selection time almost did not change from the



search task to the repeat task. This is likely caused by the fact that the
first selection only narrowed down the participants’ estimation of the
”occurrence area” of the target, while some searching was still needed
in the subsequent selection.

For low complexity tasks, GravityZone and AlphaCursor performed
better (both with shorter selection time and lower error rates). GridWall
also yielded good performance, whereas other techniques were shown
to take more time or have higher error rates. One possible cause for
this is that for simpler tasks, GravityZone, AlphaCursor, and GridWall
can reveal the target quickly with straightforward manipulations, while
techniques like FlowerCone and LassoGrid required an extra layer of
area specification. The performance of SmashProbe was comparable to
FlowerCone and LassoGrid. In contrast, MagicBall was the slowest,
mostly because it required some precision to select the small proxies of
objects.

For high complexity tasks, techniques that arranged the objects on a
grid were the most successful in terms of selection performance, with
GridWall, LassoGrid, and FlowerCone clearly outperforming other
techniques. For instance, performance when using AlphaCursor and
GravityZone suffered when the task got complex. Searching the target
became difficult for participants, as once missing the target, which
was surrounded by the sea of distractors, the participant had to move
back and forth (the cursor of AlphaCursor or the object clusters of
GravityZone) to search for them. Navigating to the correct depth where
the target located was cumbersome. Similarly, SmashProbe performed
poorly, as the target can sometimes ”jump” to places where it was still
fully-occluded by others.

Furthermore, participants found that if they kept spreading all objects
in such dense environments, it would lead to significant distraction. The
complex scenario also further exacerbated the problems with MagicBall.
This is because participants needed to have very high precision for
selecting the duplicates of the objects, while pressing the trigger on the
controller could easily cause hand tremors [14], which can lead to the
wrong selection.

Regarding easiness and intrusiveness, all techniques were rated better
than the middle point of the 7-point Likert scale. Participants rated
GridWall the easiest technique, which also caused the least distraction.
However, participants felt bored when using this technique as it no
longer felt like 3D interaction. GravityZone, LassoGrid, FlowerCone,
and AlphaCursor all got positive feedback in term of these two scales.
On the other hand, MagicBall and SmashProbe were rated lower, given
the difficulty of selecting targets with these techniques. MagicBall
can cause a wrong selection due to the handshaking, and SmashProbe
might lead to an unexpected spread of the objects when performing
the selection. However, they were both seen as interesting by the
participants. MagicBall built a nice overview of the objects, while
SmashProbe created a level of unexpectedness, which could be fun for
gaming purposes [59]. With regard to preference ranking, GravityZone
was ranked highest, followed by techniques that employed the grid
feature and AlphaCursor.

Based on the study results and our observations, we extracted a set of
design lessons for different kinds of scenarios and application purposes
regarding fully-occluded target selection.

L1. Use techniques with the grid feature (GridWall, LassoGrid, and
FlowerCone) for dense environments. Our results showed that these
techniques had much better performance in complex tasks. However,
according to the design space, be aware that these techniques would
not preserve the original scene (the original locations of objects).

L2. Depth-based techniques (AlphaCursor and GravityZone) pro-
vide simple solutions to lower complexity tasks. They can also preserve
the location information of objects. However, when many distractors
are clustered with the target, it might be difficult for these techniques
to navigate to the exact depth where the target is located.

L3. A smaller-scaled duplicate of the whole environment (like
MagicBall) can help provide location awareness in virtual environments
[79]. However, requiring users to perform direct selection on the small
object proxies can pose challenges, such as hand tremors [14].

L4. It can be beneficial to use techniques that have some sort of
unpredictability for recreational purposes (like SmashProbe). However,

Fig. 6. (a) We implemented a selection enhancement technique on
the grid layout, which would select the closest object to the ray; (b)
MagicBall+ embedded an adjustable cursor which could transform all
object proxies into a grid layout for accurate selection.

in dense and complex environments, such unexpectedness can obstruct
the primary selection task. In addition, applying 3D features in a virtual
environment rather than only using 2D surfaces (e.g., GridWall) could
lead to a more enjoyable experience.

After summarizing the findings from this first study, we were in-
terested in refining the most promising techniques further. We also
wanted to explore how specific environmental factors (like the size
of the occurrence areas, occlusion layers, target depths, and object
densities) would affect the performance of the techniques.

8 TECHNIQUE REFINEMENT

The seven techniques can be categorized into three sets: grid-based
(GridWall, LassoGrid, and FlowerCone), depth-based (GravityZone
and AlphaCursor), and others (MagicBall and SmashProbe). As the
techniques in the different sets are better suited for different application
purposes, and the ones within a set have similar strengths and weak-
nesses, we decided to improve them according to their general features.
Based on the results and our observations from Study 1, we refined the
techniques as follows.

We first improved the techniques that used grids (GridWall, Lasso-
Grid, and FlowerCone). In the experiment, we found that the RayCast-
ing technique for selecting objects on the grid sometimes led to errors
during the fast-paced movements, as a correct selection was confirmed
only when the ray was ”crossing through” the target. Therefore, we
decided to add selection enhancement techniques for RayCasting in
the grid selection phase. We highlighted the nearest object to the ray
and confirmed the selection on it when the user pressed the trigger, as
this was shown to be the most efficient visual feedforward by recent
work [11] (see Figure 6a). Additionally, to preserve depth information
of the objects, we scaled the distances between the objects on the grid
and the user according to the object’s real distances to the user. This
also adds some 3D features on the 2D grid surface. Although the visual
size of the objects changed, our selection enhancement ensured that the
effective size for selection was the same. Furthermore, we identified
that randomizing the positions of the objects on the grid every time
(for search and repeat tasks) was not efficient when there were a large
number of objects. It could be more effective if objects were arranged
by their distance to the ray (or center of the cone), from the closest to
the farthest.

We also aimed to enhance the depth-based techniques (GravityZone
and AlphaCursor).For some users, we observed that when the distrac-
tors in the front of the target were fairly close to it, navigating to the
exact depth where the target located was laborious. Meanwhile, using a
constant cursor speed might not be ideal for every user, as some might
need it to be faster, while others want it to be slower. As a result, we
made the cursor speed adjustable through the joystick input. The harder
it was pushed/tilted, the faster the cursor became.

In addition, we found that most users had difficulties when selecting
object proxies inside the mini-map, especially in the case where there
was a large number of objects. To improve the selection, we combined
the grid feature, which was shown to be effective for selection into
MagicBall. Instead of employing the forward and backward movements
of the joystick to translate the mini-map (which was not that useful



according to our inspection), it was used to scale up and down the
transparent point cursor, which was used for selecting objects. Once
the selection trigger was pressed, and the scaled-up cursor enclosed
more than one object proxy, the objects that were inside the cursor
would be arranged onto a grid for the second phase of selection (see
Figure 6b). Users could still select objects from the mini-map directly
if only one object proxy collided the cursor.

We first picked two techniques, LassoGrid from the grid-based tech-
niques and GravityZone from the depth-based techniques, according
to the empirical performance and user feedback, and applied the re-
finements as mentioned above. We also improved MagicBall, as many
users preferred the small overview of objects, and the main problem
with the technique was the difficulty caused by selection. Consequently,
we evaluated the three refined techniques (LassoGrid+, GravityZone+,
and MagicBall+) in the second study.

9 STUDY 2 - IN-DEPTH EVALUATION

To have a more thorough understanding of how different environmental
factors might affect the performance of the techniques, we conducted a
second study based on three refined techniques (GravityZone+, Lasso-
Grid+, and MagicBall+).

9.1 Environmental Factors

Initially, we were interested in five essential environmental factors (oc-
currence area, occlusion layer, environmental density, target depth, and
density space) which can have a substantial impact on target selection
with the different techniques. However, evaluating all of them might
pose a high workload for participants.

As a result, we combined environmental density and density space to
one single factor called area density, as both these factors are related to
the number of distractors inside a space unit. Area density specified the
density of the objects within the occurrence area, intending to maintain
the same level of difficulty for techniques within the targeting area.
We assumed that objects within the targeting area might raise more
challenges than the ones that were spread around the whole space.
In this case, the density of the objects within the whole environment
(outside of the occurrence area) would be set as constant. We ended
up with four environmental factors, which are OCCURRENCEAREA,
AREADENSITY, OCCLUSIONLAYER, and TARGETDEPTH.

9.2 Method

We recruited another set of 16 participants (9F/7M) between the ages
of 20-32 (M = 24.6 ± 3.3) with different educational backgrounds from
a local university campus. All participants had normal or corrected-to-
normal vision. They rated their familiarity with VR as moderate (3.6 ±
1.7 on a 7-point scale). We used the same apparatus and devices as in
the first study.

The study employed a within-subjects design with five factors:
TECHNIQUE (GravityZone+, LassoGrid+, and MagicBall+), OCCUR-
RENCEAREA (small and large), AREADENSITY (low and high), OC-
CLUSIONLAYER (less and more), and TARGETDEPTH (low and high).
The details of the variables are summarized in the supplementary mate-
rial. Three techniques appeared in a random sequence, while for each
technique, we varied the four counterbalanced environmental factors.
The techniques were well-distributed in terms of their order according
to our post-hoc evaluation. In this study, only the search task was
used, rather than including both search and repeat task, because 1) it
decreased the workload of the participants, 2) we found techniques had
similar rankings based on the selection time for both tasks, and 3) the
search phase is likely to be more relevant to real application scenarios.
In total we collected 3072 trials of data (16 participants × 3 techniques
× 2 occurrence areas × 2 area densities × 2 occlusion layers × 2 target
depths × 4 repetitions).

As with Study 1, we gathered selection time and error rate data, and
observed each experiment. Additionally, we used two standardized
questionnaires to assess the task workload and user experience. The
workload was measured by RAW NASA-TLX [39], and the user ex-
perience was quantified by the short version of the User Experience

Table 2. The results from the short version of User Experience Question-
naires (UEQ-S) which outline the pragmatic quality, hedonic quality, and
overall quality of each technique. In the table, ”>avg.” means ”above-
average”, ”exc.” means ”excellent”.

Technique Pragmatic Hedonic Overall

GravityZone+ 1.31 (>avg.) 1.38 (>avg.) 1.34 (>avg.)
LassoGrid+ 1.83 (exc.) 1.77 (good) 1.80 (exc.)
MagicBall+ 1.56 (good) 2.05 (exc.) 1.80 (exc.)

Fig. 7. The results from Raw NASA-TLX Questionnaires. Error bars
indicate the 95% confidence interval. Statistical significant effects are
marked (*** = p < .001).

Questionnaire (UEQ-S) [61]. These questionnaires are more compre-
hensive than the ones used in the first study, which were used for
the simplicity of the experiment given the higher number of tested
techniques. Both questionnaires were presented inside the virtual envi-
ronment as previous work has shown that it can reduce study duration
and user disorientation [62].

The study lasted approximately 35 minutes for each participant.
A similar procedure as the first study was used. Participants were
compensated with a $10 voucher.

9.3 Results

As in the first study, we discarded the error trials (174 errors, 5.7%)
and the outliers (78 trials, 2.5%) to analyze the selection time. We
employed a RM-ANOVA with Greenhouse-Geisser correction for ana-
lyzing the effect of each factor. Pairwise comparisons with Bonferroni
adjustment were used for technique comparison. Error rate data was
transformed using ART [75] and was then analyzed through a RM-
ANOVA. Regarding user feedback, we summarised the results from the
questionnaires in Table 2 and Figure 7.

Since we were interested in how the techniques were affected by
different environmental factors, we only present the effects and interac-
tions related to the factor TECHNIQUE.

9.3.1 Selection Time

A RM-ANOVA indicated that TECHNIQUE (F1.375,20.627 = 20.039, p<
.001,η2

p = 0.572) had a significant main effect on selection time, with
a large effect size. A post-hoc test revealed that LassoGrid+ was
significantly faster than GravityZone+ (p< .001) and MagicBall+ (p<
.001). GravityZone+ was also indicated to be faster than MagicBall+
(p = .048).

There were interaction effects between TECHNIQUE × AREAD-
ENSITY (F1.356,20.336 = 6.090, p = .015,η2

p = 0.289), TECHNIQUE ×
OCCLUSIONLAYER (F1.864,27.954 = 7.365, p = .003,η2

p = 0.329), and
TECHNIQUE × TARGETDEPTH (F1.747,26.206 = 14.584, p< .001,η2

p =
0.493), all with medium to large effect size. We present these inter-
action effects in Figure 8. No other interaction effects were found.
Although there was no interaction between TECHNIQUE and OCCUR-
RENCEAREA, OCCURRENCEAREA itself did have a significant main
effect on selection time (F1,15 = 61.186, p < .001,η2

p = 0.803).



Fig. 8. Plots of selection time for the three improved techniques. These plots include techniques’ overall selection time (a) and their selection time in
different levels of Occurrence Area (b), Area Density (c), Occlusion Layer (d), and Target Depth (e). Error bars indicate the 95% confidence interval.

9.3.2 Error Rate

TECHNIQUE had a significant main effect on error rate (F2,705 =
8.027, p < .001). A post-hoc test showed that GravityZone+ (5.96%,
p = .032) and LassoGrid+ (3.51%, p < .001) had statistically signifi-
cantly lower error rates than MagicBall+ (7.52%), with no significant
difference between the two (p = .490).

A RM-ANOVA also revealed further interactions among the other
factors. However, as the error rate was relatively low for all techniques
(according to [11, 66]) and better techniques clearly outperformed the
worse ones in terms of performance (lower error rate techniques as
well as lower selection time), we do not examine these results here in
further detail. For detailed statistics, please refer to our supplementary
materials.

9.4 Summary and Discussion

In this section, we first examine the influence of the four environmental
factors on the three techniques and then compare the input techniques
from different perspectives.

Occurrence area had a similar impact on all techniques—as it in-
creased, the selection time of the three techniques also increased sig-
nificantly. This was expected as an inaccurate prior estimate of where
the target might be located (larger occurrence area) leads to a higher
search time, prolonging the selection process.

Area density affected the selection performance of all techniques, but
the magnitude of the effect was different, as indicated by the significant
interaction effect. As the density increased, search and selection for
GravityZone+ and MagicBall+ became much more difficult than for
LassoGrid+. One potential reason for this difference is the fact that
organizing the objects on a grid-like 2D layout demanded less effort
for searching rather than the original clustered and overlapped 3D
arrangements [19].

Occlusion layer only influenced the performance of GravityZone+.
With GravityZone+, it can feel somewhat cumbersome navigating
through multi-layers of distractors. However, when using LassoGrid+,
which arranged objects in the target area on a grid, and MagicBall+,
which provided a quick overview of all the objects, users were not
impeded by these layers at all.

Target depth affected the performance of GravityZone+ and Mag-
icBall+, but not of LassoGrid+. LassoGrid+ was invariant to the
change of target depth, as it transformed the 3D region to a grid, re-
gardless of the real depth of the objects. Although we added depth
information on LassoGrid+, it only changed the visual size of the
objects, but not its effective size with the selection enhancement tech-
nique [35, 66]. For GravityZone+, when the target was located further,
participants were required to navigate more to reach it, thus induced
longer selection time. However, participants spent more time in select-
ing the lower depth target using MagicBall+ than the higher depth ones.
This was because participants were observing the whole environment
from the outside of the mini-map, lower depth target actually looked
farther away. Hence, there might be more distractors on the way of
getting the goal target.

After seeing how each environmental factor affected the performance
of the techniques, we compared the techniques in terms of different
measurements below. The performance data were consistent in terms
of selection time and error rates. LassoGrid+ had the lowest selection
time and error rate, while for MagicBall+ they were the highest. The
NASA-TLX results also show a similar trend. Participants were more
satisfied with their performance and had lower frustration and mental
workload levels when using LassoGrid+. Concerning the UEQ-S
results, LassoGrid+ was shown to have excellent pragmatic value,
while MagicBall+ was rated outstanding in the hedonic quality. They
both had excellent overall quality. However, GravityZone+ was rated
just above-average on all aspects of the UEQ-S. It seemed to suffer
from the “middle children syndrome” [43], where it did not look as
innovative as MagicBall+ and was not as effective as LassoGrid+.
Therefore, its ratings from the participants were relatively low.

10 DESIGN RECOMMENDATIONS

Based on the results from both studies, we distill design recommen-
dations regarding choosing input techniques for the selection of fully-
occluded target in virtual environments.

R1. When the goal of the task is rapid selection, we suggest using
grid-based techniques (GridWall, FlowerCone, and LassoGrid+) to
ensure optimal user performance. Use LassoGrid+ when it is difficult
to decide which one of them to use, as it allows users to define their es-
timate of where targets might occur freely, and only one trigger/button
will be needed for the whole selection process. Consider adding selec-
tion enhancement techniques (like highlighting the closest object) to
improve performance further.

R2. When maintaining the object location information is essential
(e.g., 3D plots), we recommend using depth-based techniques (Al-
phaCursor and GravityZone+) or MagicBall+. Our results indicate
that GravityZone+ should be favored if better performance is needed.
AlphaCursor and MagicBall+ can be used when it is not desirable to
move the objects in the scene.

R3. If the technique is used for recreational purposes (like game
applications), consider use SmashProbe and MagicBall+ as they are
more exciting or have higher hedonic quality. However, avoid using
SmashProbe when there are too many objects in the scene, as it could
be very distracting.

R4. Be sure to consider the environmental factors (occlusion layers,
target depths, object densities, and the estimation of target location) of
the application and how they might influence the performance of the
technique. If the environment constantly changes, as a rule of thumb,
use LassoGrid+ as it was shown to be relatively robust in terms of
performance.

11 DEMONSTRATIONS

Based on our findings, we have developed two proof-of-concept demon-
strations in VR showing the techniques in real application scenarios
(see Figure 9). The first demo shows an ocean exploration scenario in
VR, which belongs to the case of exploring complex 3D data visualiza-
tions. Users are immersed under the ocean and surrounded by a large



number of underwater creatures. With our techniques, they can select
an animal of interest that lives in certain areas or is hidden by corals to
delve into its detailed information (like name, habitat, life cycles, etc.).
A similar scenario would be to explore specific locations occluded
by buildings in a 3D city visualization. The second demo mimics a
3D modeling scenario. Users can acquire fully-occluded objects in
the scene and perform consequent manipulations like translation and
duplication. Both applications are demonstrated in the supplementary
video.

Fig. 9. (a) In the sea exploration scenario, a user used LassoGrid+
to learn about animals (which might be fully-occluded) living within a
particular area. (b) AlphaCursor reveals the hidden tree in the modeling
scene.

12 LIMITATIONS

We have identified several limitations in our work. First, for simplicity,
we simulated a user’s estimated area of where a target might occur
only in a circular form. However, in a real-world scenario, multiple
occurrence areas can exist, and they can be in any shape, even with
some depth.

Second, we did not fine-tune the parameters of all the techniques
through user studies, as it was not the primary goal of this work. For
example, instead of arranging objects on a grid, other layouts are also
possible (e.g., rings [10]), which could further improve the performance
of the techniques.

Third, we did not include unselectable objects in the scene, as we
envision a superimposed scenario that culls out the unselectable objects
for the ease of selection. However, future work might want to investi-
gate how unselectable objects can be embedded into the scene and how
various properties related to these objects (like sizes and placements)
can affect the selection.

Fourth, our experiments feature more abstract tasks that enabled us to
control the variables of interest precisely, however, we did not evaluate
technique performance under practical scenarios. To strike a balance
between internal and external validity of our findings, though two proof-
of-concept demonstrations are provided, more work is necessary to
understand how the techniques can perform and how we can adjust
them in realistic workflows. For example, future work can explore
how the techniques could be applied to disambiguate vertex or edge
selection in 3D modeling applications.

13 CONCLUSION

In this paper, we explored fully-occluded target selection in virtual
reality environments. Based on the existing literature on the topic, we
highlighted three open challenges within this research topic in terms of
problem formulation, combining occlusion visualization with selection
techniques, and in-depth evaluation. To address them, we first framed
a general problem-solving strategy and, according to that, devised
the design space. We then designed seven potential techniques and
evaluated them through a user study.

Based on the study results, we derived design implications and re-
fined the most promising techniques. We conducted a second study
to analyze how four environmental factors (occlusion layers, target
depths, object densities, and the estimation of target locations) influ-
ence technique performance. Based on our findings, we offer a set of
distilled recommendations for future virtual reality systems that offer

fully-occluded target selection. We believe our design approaches and
proposed techniques can trigger the creation of exciting user interfaces
and applications related to fully-occluded selection. Future work can
optimize further the techniques, as well as develop new methods for
selecting fully-occluded targets in VR.
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Chapter 5

GAZE-SUPPORTED 3D OBJECT MANIPULATION

5.1 Summary
In this work, we propose interaction techniques incorporating eye gaze input into the object
manipulation process based on mid-air input (i.e., Virtual Hand and Raycasting). While mid-air
input is probably more suitable for 3D controls, gaze has been identified as a lightweight and
fast input method, which can be a helpful complementary modality. Our techniques considered
integration, coordination, and transition strategies of gaze and hand input and were evaluated
in two user studies. The user studies covered a controlled working space with all objects
within arm-reach distance and a larger virtual environment with distant objects and realistic
workflows (i.e., reconstructing a virtual room).
The proposed gaze-supported 3D object manipulation techniques can handle small and distant
objects. They were demonstrated to be more efficient in interacting with out-of-reach objects,
induce less arm fatigue, and provide more desirable user experiences. The techniques can be
applied to various applications containing objects of different sizes and distances.

Env. Task
Small Distant Occluded Effectiveness Efficiency Ergonomics Experience Expressivity
✓ ✓ ✓ ✓ ✓ ✓

5.2 Article II
This is the author’s version of the work for your personal use only (i.e., not for redistribution).
The definitive version can be found in ACM Digital Library:
Difeng Yu, Xueshi Lu, Rongkai Shi, Hai-Ning Liang, Tilman Dingler, Eduardo Velloso, and
Jorge Goncalves. "Gaze-Supported 3D Object Manipulation in Virtual Reality." In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1-13. 2021. https:
//doi.org/10.1145/3411764.3445343
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ABSTRACT
This paper investigates integration, coordination, and transition
strategies of gaze and hand input for 3D object manipulation in VR.
Specifically, this work aims to understand whether incorporating
gaze input can benefit VR object manipulation tasks, and how it
should be combined with hand input for improved usability and
efficiency. We designed four gaze-supported techniques that lever-
age different combination strategies for object manipulation and
evaluated them in two user studies. Overall, we show that gaze did
not offer significant performance benefits for transforming objects
in the primaryworking space, where all objects were located in front
of the user and within the arm-reach distance, but can be useful for
a larger environment with distant targets. We further offer insights
regarding combination strategies of gaze and hand input, and derive
implications that can help guide the design of future VR systems
that incorporate gaze input for 3D object manipulation.
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1 INTRODUCTION
As one of the primary tasks in virtual reality (VR) systems, object
manipulation is used in many different application domains such
as 3Dmodeling [14, 20], game development [18], online collabora-
tion [25, 38], and immersive data exploration [2, 8]. However, its
primary input modality, which uses virtual hands to “direct ma-
nipulate” an object, has long been criticized for being inefficient
and imprecise [7, 36], and likely to induce arm-fatigue in longer
interaction scenarios [16, 29, 35].

Alternatively, gaze has been identified as a light-weight and fast
input method, and has shown its potential for assisting with object
manipulation tasks (e.g., [33, 40, 59]). However, previous work in
VR mostly focused on the use of gaze for target selection [39, 45],
which is only a sub-phase of the whole manipulation process, while
how gaze input can be incorporated into the “manipulate” phase
(translation, rotation, and scaling [31]) is still underexplored. Thus,
this research aims to understandwhether the incorporation of gaze
input can benefit the hand manipulation process in VR, and how
gaze input should be combined with hand input for convenient and
efficient 3D object manipulation.

This research investigates different integration, coordination, and
transition strategies when incorporating gaze into current systems
with mid-air hand input for 3D object manipulation in VR. Specially,
we examine a design space that considers how gaze and hand input
are integrated into different phases of the manipulation task, how
they coordinatewith each otherwhen starting themanipulation, and
how to transition from one to the other during manipulation. Based
on this design space, we developed four gaze-supported manipula-
tion techniques and evaluated them through two user studies. In
the first study, we focused on the primary working space, where all
objects located in front of the user and were within arm-reach dis-
tance, and assessed the techniques in terms of user performance and
experience. In the second study, we further evaluated our techniques
in a larger virtual environment with distant objects and embedded
the designed techniques into realistic workflows.

Our findings show that gaze might not offer significant perfor-
mance benefits for transforming objects in the primary working
space, but can be useful in a larger environment with distant tar-
gets, while also mitigating the arm fatigue issue. We further derived
a set of design implications that reveal the usefulness of different
strategies, including hand-only vs. eye-hand manipulation, direct vs.
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remote handmappings, and implicit vs. explicit eye-hand transitions.
Our findings and implications provide a helpful guide for the design
of future gaze-supported object manipulation techniques in VR.

To summarize, the main contributions of the paper include:
• The design space of how to incorporate gaze into the traditional
hand-based object manipulation workflow.

• A novel implicit transition-based approach (called ImplicitGaze).
• The evaluation of the techniques, which has led to useful findings
and design implications (whether it is beneficial to incorporate
gaze and what can be done to improve interaction).

2 RELATEDWORK
Here we introduce the most commonly used approaches and recent
advances regarding VR object manipulation (also see more thor-
ough recent reviews [31, 36]). We further discuss gaze-supported
techniques used in VR and other domains.

2.1 Object Manipulation in VR
Mid-air interaction based onVirtualHand is one of the primary input
paradigm for modern VR systems [36]. With spatially tracked hand
positions, typically with 6 degrees-of-freedom (DoF), users are able
to directly translate and rotate objects in virtual environments in
a similar way as they manipulate them in the physical world [44].
Although it has been criticized to be inefficient and imprecise [7, 36],
due to its simplicity and intuitiveness of the control, Virtual Hand
has been widely applied in various VR applications [14, 20, 27].

Further approaches have been used to enhance Virtual Hand. For
example,Go-Go [43] and its recent extension [69], which scale up the
speedof thevirtualhand, enableusers to reachdistant targets, evenat
apotentially infinite distance [5].Raycasting alsoprovides aneasy so-
lution foracquiringdistantobjects, butusersmaynotbeable to rotate
the object precisely with one single hand as they are attached to the
end of the ray [5]. Other methods [41, 57, 73] scale-down the whole
virtual world to enable the interaction with out-of-reach objects.

To offer fine-grained manipulation control, several interaction
techniques decrease the control-display ratio of the handmovement
based on hand velocity [17, 70]. Degree-of-freedom (DoF) separa-
tion [37, 65] is another promising way to increase the accuracy of
mid-air object manipulation—that is, rather than manipulating all
the six DoF simultaneously, only one or two of them are controlled
each time. For instance, in a recent work, researchers tried to reduce
the DoF during object manipulation by constraining it to the shape
of a point, ray, or plane, thereby increasing precision [22].

Nevertheless, manymid-air interaction techniques fall short in
supporting prolonged manipulation due to cumulative armmuscle
fatigue (the so-called “gorilla arm”effect) [29].This is especiallydetri-
mental to interaction scenarios such as 3Dmodeling in VR, which
require fine-grained, focused, and prolonged usage of mid-air inter-
faces. To address these challenges, providing indirect mappings [35]
or integrating other less effort-demanding input modalities such as
gaze into object manipulation techniques in VR can be potentially
helpful.

2.2 Gaze-SupportedManipulation
Gaze-supported object manipulation has been widely explored in
contexts outside VR. In general, while gaze offers fast and natural

pointing, it suffers from the lack of precision and the difficulty of con-
firming a selection. To overcome these challenges, many techniques
combine gaze with an additional modality, such as the principle of
“gaze select, hands manipulate” [9, 39, 56, 66]. For example, Pfeuffer
et al. proposedGaze-touch [39], which enabled users to control gaze-
selected targets indirectly using multi-touch gestures on interactive
surfaces. Another example is the method proposed by Turner et
al. [62], which casts the object being looked at by the user to the
touch/cursor position to allow further manipulation. In contrast,
other approaches [48, 55, 60–63, 67] for content-transfer between
different displays, have embedded gaze movement into the transla-
tion process. These prototypes typically require the use of a hand
trigger to “attach” the object to the gaze direction and then release
the hand trigger to “drop” it. In a followup research, Turner et al. [59]
pushed this concept further by developing techniques that main-
tain concurrent rotation and scaling operations when performing
translation tasks using gaze and touch.

Limited work has investigated gaze input for object manipulation
in VR or 3D virtual space. Simeone et al. [52] combined bi-manual
touch gestures with gaze input to allow the scaling of objects on
the XYZ-axis inside a touchscreen. Liu et al. have presented Or-
thoGaze [34], in which gaze is issued to move an object along three
orthogonal planes in VR. Other researchers have used eye gaze to se-
lect objects, and leveraged indirect freehand gestures to manipulate
them [40, 42, 45, 54]. All of them still followed the idea of “gaze select,
handsmanipulate”. In contrast to these approaches, the gaze input in
our work was not only used for the selection of objects but also was
involved in the whole target manipulation process, which requires
continuous actions rather than the discrete selection operation [59].
Our aim is to understand how different methods of hand-eye inte-
gration, coordination, and transition can result in improved user per-
formance and their suitability to be applied to a variety of scenarios.

2.3 Transition Between Gaze andHand Input
Different collaboration strategies have been explored to combine
gaze and other input modalities, such as hands or head [49, 50], and
the transition between different modalities can be classified accord-
ing to whether they are explicit and implicit. Explicit transitions
rely on specifically issued commands to switch between gaze and
other forms of input. The “switch” orders include actuating the input
device or pressing a trigger. In contrast, implicit transitions do not
rely on distinct commands to switch between multiple input mech-
anisms; all modalities always have an effect on the cursor/object
that users interact with, and users do not need to concern about the
transition during the interaction.

An example of the explicit transition is Pinpointing [30], which
starts with a fast but imprecise modality like gaze, and then refin-
ing it with a slower but more precise input modality such as hand
gestures with an explicit button click or a finger gesture for mode
transition. An example of the implicit transition is “liberal”MAGIC
pointing [76], where users can always move the cursor with manual
or gaze input once they have decided to do so, without activating
any trigger. While explicit transitions offer more robust control in
many cases [30], implicit transitions fade the boundary between the
input mechanisms and smooth the “flow” of interaction.
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Gaze Grab

Remote Hand

3D Magic Gaze and Implicit Gaze

Figure 1: An illustration of the target manipulation process,
wheregaze isused for indicate,handsareused for trigger con-
firm and release, and both inputs are applied (as hand only,
or gaze and hand collaboratively) for object manipulation.

It is important to note that we distinguish “implicit” from other
namespresented in the literature like “seamless” [51, 55], the smooth-
ness of the transition, and “concurrent” [59], the ability tomanipulate
multiple degrees-of-freedom simultaneously. Seamlessness and con-
currency do not ensure an implicit transition; we only consider if an
explicit triggering mechanism is used. As discussed, previous works
on gaze-supported VR object manipulation mainly used gaze as a
selection technique, rather than incorporated it into the manipulate
phase which includes translation, rotation, and scaling. Therefore,
how to transition between gaze and hand input for manipulation
tasks is still underexplored.

3 DESIGN SPACE
3Dobjectmanipulation techniquescanbebrokendownintoan initial
selection of object and the latermanipulation steps including transla-
tion, rotation, and scaling [6, 40]. We first introduce this process and
propose corresponding inputmodalities for each sub-phase.We then
formulate a design space that considers how gaze and hand input are
integrated into different phases of the manipulation task, coordinate
with each other when starting themanipulation, and transition from
one to the other during manipulation. Based on the design space, we
further point out several gaps in the existing literature, and use this
knowledge to design our proposed techniques.

3.1 Target Manipulation Process
We first introduce a target manipulation process that is based on
previous works [6, 40]. The whole task can be decomposed into four
phases: indicate, confirm, manipulate, and release (see Figure 1). We
identified suitable input modalities for each phase, which is then
useful to structure and narrow down our exploration space.

3.1.1 Indicate. Indicating is the action of determining the target
of interest with an input device. The literature suggests that gaze-
based pointing requires less effort and can be faster than manual
input [39, 40, 55]. Further, gaze tracking has become more accurate
with recent advances in the field [15]. Therefore, we consider gaze
as our input mechanism in the indicate phase.

3.1.2 Confirm. Confirming the selection allows users to “pick up”
and start manipulating the indicated target. Because gaze-based con-
firming techniques, such as dwell, can be inefficient and may induce
unwanted selection [26], we decided to use a hand-based method,
specifically, pressing the trigger on the hand-held controller for a
robust control of the confirm phase.

3.1.3 Manipulate. Manipulation of objects, including translation,
rotation, and scaling, can be achieved by hand input alone, or by
gaze and hand input together. Gaze can be treated as a 2 degrees-of-
freedom (DoF) modality as an estimated gaze point normally moves
on a 2D spherical plane, while accurately predicting the depth of the
gaze point can be challenging [24]. In contrast, hand-based mech-
anisms typically feature 6 DoF motion input (both translation and
rotation along the 3 axes). Based on its properties, gaze offers more
opportunities for rapid translatingobjects in the lateral direction [59].
As for hands, they are likely to be better in positioning objects in
the depth dimension (the third DoF), and rotating or scaling them
(as they either require the rotation of the input device or need mul-
tiple control points). To distinguish this phase from the whole target
manipulation process, we call it the manipulate phase in this paper.

3.1.4 Release. Releasing the trigger signals the completion of one
operation. Similar to the confirm phase, we use the trigger on the
controller for the robust control of the release phase.

3.2 Design Dimensions
We considered the following three-dimensional design space by em-
phasizing the integration, coordination, and transition of gaze and
hand input for the manipulate phase. While we acknowledge that
exploring other design dimensions such as target properties and in-
put techniques can be useful, this research focuses on exploring how
to incorporate gaze-input into the traditional hand-based workflow.

D1. Integration: which input mechanism(s) of gaze and hand has
(have) been integrated into the manipulate phase.

D2. Coordination: when starting the manipulate phase, if the in-
dicated target will snap to the hand position or remain in its
original place. This further corresponds to whether the object
is directly mapped onto the hand position (direct mapping) or
manipulated by hands remotely (remote mapping).

D3. Transition: if both input mechanisms are involved in the ma-
nipulate phase, whether the transition between gaze and hand
input is explicit or implicit (with or without specifically issued
triggering commands like button pressing).

3.2.1 Synthesis of PriorWork. We further summarized howexisting
gaze-supported manipulation techniques fit into each dimension
of the design space (see Table 1). We have focused on the ones that
involve hand input in the manipulate phase, rather than relying on
the gaze input alone. That is, the approaches that use gaze input only
as a supporting mechanism for manipulation.

3.2.2 Research Gaps and Design Opportunities. The design space
and the synthesis of prior work reveal some research gaps that are
essential for framing the design of gaze-supported object manipula-
tion techniques but are still underexplored in the literature and thus
create new design opportunities.
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Techniques Integration Coordination Transition
Gaze Hand Direct Remote Implicit Explicit None

Eye drop [61, 62]
TouchGP [55]
Gaze-Touch [39]
TouchT [59]
GazeT [59]
MagicT [59]

2D

Gaze [66]
Gaze + Non-touch [42]
Three-point [52]
Gaze + pinch [40]
GG interaction [45]
Gaze + Gesture [9, 10, 54]
Gaze Grab
Remote Hand
3DMagic Gaze

3D

Implicit Gaze

Table 1: Summary of how existing gaze-supportedmanipula-
tion solutions and ours (the bottom four) fit into the design
space. Our techniques enabled us to explore explicit and
implicit transitions, which have not been well-covered by
previous research in 3D, and how different design dimen-
sions may influence user performance and experiences in
VRmanipulation.

G1. Transition mechanisms between gaze and hand input have not
been investigated in the manipulate phase in VR; most of the pre-
vious work focused on the rationale of “gaze select, touch ma-
nipulate”. However, gaze can not only support discrete pointing
tasksbutcanalsobebeneficial for targetmanipulation,whichre-
quirescontinuousactions [55,59]. Furtherexploration isneeded
to understand how gaze input supports manipulation in VR en-
vironments,which offers 3D spatial input and stereo vision [31].

G2. Implicit transition is still under-explored for target manipulation
tasks in general.According to Table 1, there is lack of implicit
transition techniques in the manipulate phase. All transitions
are based on either releasing a pressed trigger [55] or exceeding
a hand movement threshold [59] to switch from gaze input to
hand input.

G3. Techniques that leverage different elements of the design space
have not been compared in terms of their efficiency and usabil-
ity. For example, it is unclear how gaze-supported methods
that allow remote (indirect) manipulation compare to direct
manipulation-based solutions in terms of performance and user
experiences, although they have been applied in different appli-
cations [68]. Furthermore, it is still unclear if gaze-supported
techniques can provide more benefits than hand-only tech-
niques in the manipulate phase in VR.

4 TECHNIQUEDESIGN
Based on the identified research gaps and design opportunities, we
developed the following four techniques to (1) explore transition
mechanisms (G1 - 3DMagicGaze), especially implicit transition
(G2 - ImplicitGaze), for target manipulation in VR and (2) evalu-
ate and compare approaches that leverage different elements of the
design space in terms of user performance, experiences, and their
suitability to be applied to a variety of scenarios (G3). Table 1 shows
how each technique fits within the design space.

4.1 Gaze Grab
WithGazeGrab, the gaze-indicated target snaps to the hand position
once the selection is confirmed. Next, the hand takes full control of
the selected target during the manipulation phase until the trigger
is released. This technique allows the direct manipulation of objects
and represents a VR-enhanced version of previous research on con-
tent transfer [61]. Similar techniques have also been demoed in VR
applications [68], though it has not been empirically evaluated or
compared with other techniques. In our design, the gaze-grabbed
object is located slightly above the virtual hand position, to avoid
visual occlusion.

4.2 Remote Hand
Tomanipulate an object through RemoteHand, a user first points at
it with eye gaze and then confirms the selection with a hand trigger.
The target then follows the rotation and translation of the hand,
without snapping to the hand location. This technique enables the
indirect manipulation of targets with handmovement. It can be seen
as a 3D extension of existing approaches in 2D [39, 40, 66], which
follow the underlying rationale of “gaze selects, hand manipulates”.

4.3 3DMagic Gaze
3DMagicGaze establishes a circular safe region (10◦ radius, invisible
to users) around the target once the initial eye-based selection is
confirmed. If the gaze point is within the safe region, only the hand
can control the transformation of the object. Otherwise, when the
gaze point is outside of the safe region and if the hand movement
distance exceeds a threshold (0.08m), the object snaps to the gaze
point direction (without changing its depth to the user). A new safe
region appears around the target after the snapping takes place. The
design of this technique followsMagicT [59] in 2D, which requires
an explicit command (hand movement) to switch from gaze input
to manual input.

4.4 Implicit Gaze
ImplicitGaze also forms a circular safe region around the target
once the eye-based selection is confirmed. If the gaze point is inside
the safe region, hand input will control the object’s transformation.
Otherwise, if thegazepoint is outside the safe region, theobject snaps
to the gaze point direction (without changing its depth to the user).
A new safe region appears around the target after snapping. Unlike
3DMagicGaze, this techniquedoesnot relyonany triggermechanism
to switch between gaze and hand input, thus features “implicit”
transition between input modalities. To prevent the gaze cursor
from being “over-active” [76], we introduced a dynamically-resized
safe region, which resizes automatically based on the user’s gaze
behavior. It then increases its size from the original radius (6◦) with a
constant speed (10◦/s) if the gaze point stays within the region until
themaximum size (20◦). This is to simulate users’ search behavior, in
which the longer the gaze point is fixed within specific regions, the
more likely the user is approaching the target location [19, 39, 53].
Therefore, increasing the safe region’s size can avoid unwanted
snapping and allow robust, fine-grained hand translation.

The parameter values were obtained from our pilot tests. We kept
the following design aspects consistent among the techniques: (1)
the gaze pointer is invisible to users so as not to distract them; (2)
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Figure 2: (left) Task illustration: participants were required
to transform an object from its initial configuration to a
target pose; (right) An illustration of Lateral Distance and
Depth which were independent variables of the first study.

all techniques had the same control-display mapping (1:1) for hand
manipulation; and (3) all techniques used the trigger button of the
hand-held controller to confirm and release the selection.

Next, we present two user studies where we evaluated and com-
pared the four gaze-supported manipulation techniques that em-
ployed different integration, coordination, and transition strategies.
In the first study, we focused on the primary working space, where
all objects located in front of the user andwerewithin arm-reach dis-
tance, and assessed the techniques in terms of user performance and
experience. In the second study, we further evaluated our techniques
in a larger virtual environment with distant objects and embedded
the designed techniques into realistic workflows.

5 STUDY 1: CONTROLLED EVALUATION
In this study, our goal was to evaluate and compare the four gaze-
supportedmanipulation techniques (GazeGrab,RemoteHand,3DMag-
icGaze, and ImplicitGaze) that leveraged different design features
from the presented design space in a controlled working space. By
doing so, we aimed to better understand whether gaze input should
be incorporated into handmanipulation process, and howgaze input
could be combined with hand input for convenient and efficient 3D
objectmanipulation in VR. The studymainly focused on the primary
working space, where all targets of interest are located in front of the
user (less than90◦ horizontal offsetwhen theuser is looking forward)
and are within arm-reach distance. Most of the work in VR is likely
to happenwithin this area, so there is no need for users to frequently
turn back or move around the virtual environment [1, 13, 72].

5.1 Participants and Apparatus
We recruited 12 university students (3 women, 9 men) between the
age of 18 to 29 years (mean = 22.5) for this first study. All participants
reported to be right-handed.

We developed the system using the Pico Neo 2 Eye, a standalone
VRheadsetwith 6DOF tracking andTobii eye-tracking features. The
headset has 1920 × 2160 pixels screen resolution per eye and 101◦
field-of-view (FoV). The embedded eye tracker has 90Hz data output
frequency, 0.5◦ estimated accuracy, and 25◦ left/right/down and 20◦
up trackable FoV. The software was implemented in C# in Unity3D.

5.2 Task
The task requiredparticipants to transforma3Dmodel from its initial
configuration to a new target pose (see Figure 2 left). The target lo-
cation was randomly selected within 30◦ of angle distance when the
participant was looking straightforward along the z-axis (the depth
axis) of his/her local space. The initial position was then calculated
according to the target position based onour independent variables—
lateral distance (the angular distance between the start and target
location) and depth (the differences in the depth dimension). The tar-
get position was to be expected by participants. In other words, they
knewwhere the object should be translated to when starting the ma-
nipulation task, even when the initial target was located outside the
user’s field-of-view (but within the primary working space). This al-
lowed us to minimize the search time, whichmay confoundwith the
manipulation time. Another factor, which is the object orientation,
was adjusted according to the experiment requirement.

5.3 EvaluationMetrics
5.3.1 Performance Measures. To evaluate technique performance,
we controlled transformation errors to be under a threshold (smaller
than 0.015m and 3.5◦) while comparing task completion time.
• Manipulation Time: the time elapsed between when object selec-
tion is confirmed and when both of the following conditions are
satisfied: (1) the target is correctly placed with errors under the
pre-determined threshold; and (2) the trigger is released.

• Coarse Translation Time: the time elapsed between the selection
confirmation and the first time when the distance between the
acquired object and target position is smaller than 0.05m. The
rationale for including this variable was that, during our pilot
studies, we found users took a long time to re-adjust the object ori-
entation and fine-tune its position after reaching an approximate
target location.

• Re-position Time: the elapsed time for fine-grained manipulation
(= Manipulation Time - Coarse Translation Time).

5.3.2 Hand Manipulation Measures. We were also interested in
investigating how techniques may influence hand movement and
rotation for manipulation tasks, which may correlate to the arm fa-
tiguemeasures, based on the simple rationale thatmore handmotion
is likely to induce more arm fatigue [23].
• Hand Movement Distance: the accumulated distance (by accumu-
lating the displacement of hand per frame) that the hand has
travelled during the manipulation process.

• Hand Rotation Angles: the accumulated angle that the hand has
rotated during the manipulation process.

5.3.3 Subjective Measures. We also compared the techniques based
on subjective measures, including arm fatigue, ease of use, required
workload, and individual rankings.
• Borg CR10 [4, 29]: a categorical rating (0-10 points) which can be
used to assess perceived arm exertion/fatigue. It has been shown
to correlate well with objective measures from, for example, EMG
data [58]. We adopted the same format and verbal description as
previous works [29] in this experiment.

• Single Easement Questionnaire [46]: to measure the ease-of-use of
the techniques with a 7-point scale.



CHI ’21, May 8–13, 2021, Yokohama, Japan Difeng Yu, Xueshi Lu, Rongkai Shi, Hai-Ning Liang, Tilman Dingler, Eduardo Velloso, and Jorge Goncalves

• Raw NASA-TLX [21]: to measure the task load induced by the
techniques with 7-point scales.

• Subjective Ranking: a rank of all the techniques according to par-
ticipants’ overall preference.

5.4 Design and Procedure
The study employed a 4 × 3 × 2 within-subjects design with three
independent variables: Techniqe (RemoteHand, GazeGrab, Implic-
itGaze, and 3DMagicGaze), Lateral Distance (35◦ and 55◦), and
Depth (0.05m, 0.10m, and 0.15m). Lateral distance represents the
angular distance between the start and target location, whereas the
depth factor looks at the differences in the depth dimension along the
user’s line of sight (see Figure 2 right). The current level and task set-
tingmade all objects to be locatedwithin the primaryworking space
(from 0◦ to 85◦ horizontal offset andwithin arm-reach distance). The
presentation order of Techniqe was counterbalanced using the
Latin Square approach,whereas LateralDistance andDepthwere
presented in randomorder. Additionally, the rotation factor (20◦, 50◦,
80◦, 110◦, and 140◦), which is the required rotation (in angles) from
the initial to the target transform,waspre-determined for each repeti-
tion and the same set of valueswas used across all conditions (though
appeared with a randomized order). Exploring the effect of rotation
was not our primary focus, as all techniques used a similarmethod to
achieve that purpose. In the experiment, each conditionwas repeated
5 times which resulted in 1440 (= 12 participants × 4 techniques ×
3 lateral distances × 2 depths × 5 repetitions) trials of data.

The whole experiment lasted approximately 50 minutes in total.
Participants first completed a questionnaire to collect their demo-
graphic information. They were then introduced to the experiment
task and the VR device, and instructed to complete the trials as fast
and as accurately as possible. Next, we asked participants to put
on the headset and start the experience in VR. The VR experience
consisted of four sessions corresponding to four manipulation tech-
niques. Each session began with ten warm-up trials for participants
to get familiar with the input method, followed by the formal test
trials. After each session, we collected user feedback with the Borg
CR10, Single Easement, NASA-TLX, and Subjective Ranking ques-
tionnaires. Participants were required to have a rest between each
session.

5.5 Results
To analyze the collected data, we first discarded the outliers that
deviated more than three standard deviations from the mean value
(𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑.) in each condition (20 trials, 1.3%). Furthermore, a
Shapiro-Wilk test indicated that the data is non-normally distributed.
Therefore, all data underwent pre-processing through Aligned Rank
Transform (ART) [71]. Next, we performed repeated-measures
ANOVAs (RM-ANOVA) and Bonferroni-adjusted pairwise com-
parisons for each measurement. We also computed effect size
(the non-parametric estimator for CL, symboled 𝐴𝑤 [32, 64]) to
accompany the pairwise tests based on unranked (non-normal)
data. The results from performance measures, hand manipulation
measures, and Borg CR10 are summarized in Figure 3.

5.5.1 Performance Measures. A RM-ANOVA indicated that Tech-
niqe (𝐹3,253 = 4.141, 𝑝 = .007) and Lateral Distance (𝐹1,253 =
5.414,𝑝 = .021)hadsignificantmaineffectsonManipulationTime,but

notDepth(𝐹2,253=0.186,𝑝 = .831).No interactionbetween thesevari-
ables was found. A post-hoc test indicated thatGazeGrab (13.7𝑠) was
significantly slower (𝑝 = .004,𝐴𝑤 =0.64) than RemoteHand (12.3𝑠).

Another RM-ANOVA showed that both Techniqe (𝐹3,253 =
3.084,𝑝 = .030) and Lateral Distance (𝐹1,253=25.024,𝑝 < .001) had
significantmaineffects onCoarseManipulationTime, butnotDepth
(𝐹2,253 =0.610,𝑝 = .544). An interaction effect between Techniqe
and Depth was also identified (𝐹6,253=3.396,𝑝 = .003). When Depth
increased, while RemoteHand, ImplicitGaze, and 3DMagicGaze led
to larger Coarse Manipulation Time,GazeGrab required less time.
A post-hoc test indicated that ImplicitGaze (4.1𝑠) was significantly
faster (𝑝 = .036,𝐴𝑤 =0.61) than GazeGrab (4.7𝑠).

Finally, Techniqe (𝐹3,253=3.861,𝑝 = .010) had a significant main
effect on Re-position Time, but not Lateral Distance (𝐹1,253 =
1.377,𝑝 = .242) or Depth (𝐹2,253 = 0.452,𝑝 = .637). No interaction
effectswere found. According to a post-hoc test,GazeGrab (9.1𝑠) was
significantly slower (𝑝 = .007,𝐴𝑤 =0.64) than RemoteHand (7.6𝑠).

5.5.2 Hand Manipulation Measures. A RM-ANOVA showed that
both Techniqe (𝐹3,253 = 13.559,𝑝 < .001) and Lateral Distance
(𝐹1,253=55.681,𝑝 < .001) had significant main effects on HandMove-
mentDistance, but notDepth (𝐹2,253=0.126,𝑝 = .881). No interaction
effects were found. A post-hoc test indicated that ImplicitGaze re-
quired much smaller hand movement than 3DMagicGaze (𝑝 = .047,
𝐴𝑤 =0.38),GazeGrab (𝑝 < .001,𝐴𝑤 =0.30), andRemoteHand (𝑝 < .001,
𝐴𝑤 =0.31). Furthermore, 3DMagicGaze required significantly less
hand movement than GazeGrab (𝑝 = .008,𝐴𝑤 =0.38).

Furthermore, Techniqe (𝐹3,253=15.663,𝑝 < .001) and Lateral
Distance (𝐹1,253 =26.569,𝑝 < .001) had significant main effects on
Hand Rotation Angles, but not Depth (𝐹2,253 =0.924,𝑝 = .398). Ad-
ditionally, no interaction effects between the variables were found.
ImplicitGaze led to significantly less hand rotation than 3DMag-
icGaze (𝑝 = .003,𝐴𝑤 = 0.37) and RemoteHand (𝑝 = .008,𝐴𝑤 = 0.39).
Additionally, GazeGrab also resulted in significantly less hand ro-
tation than 3DMagicGaze (𝑝 < .001, 𝐴𝑤 = 0.29) and RemoteHand
(𝑝 < .001,𝐴𝑤 =0.30).

5.5.3 Subjective Measures. A RM-ANOVA test indicated that Gaze-
Grab induced more arm fatigue and higher physical workload than
all other techniques (for all pairwise comparison, 𝑝 < .001). It also
led to higher (mental and physical) effort and created more frustra-
tion than ImplicitGaze and RemoteHand (all 𝑝 < .024), and higher
mental demand than 3DMagicGaze (𝑝 = .034). Subjective ranking
data indicated that participants significantly preferred ImplicitGaze,
RemoteHand, and 3DMagicGaze over GazeGrab (all 𝑝 < .001). No
other statistically significant effect was identified.

5.6 Discussion
5.6.1 Hand-Only vs. Eye-Hand Manipulation. When comparing the
hand-only (during the manipulate phase) technique (RemoteHand)
and the eye-hand techniques (3DMagicGaze and ImplicitGaze), we
did not observe significant performance differences. This extends
findings from previous research on 2D screens [59], where gaze was
not be able to enhance the performance of manipulation tasks in the
primary working space. On the other hand, adding transitions be-
tween gaze and hand also did not deteriorate performance compared
to hand-only techniques; participants quickly learned/adapted to
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Figure 3: Plots of techniques’ performance under different measurements. Error bars indicate the standard error. Statistical
significant effects aremarked (* = p < .05, ** = p < .01, and *** = p < .001).

these new input methods. As expected, RemoteHand required more
hand movement and rotations to achieve the same manipulation
task. However, the results from the Borg CR10 and NASA-TLX ques-
tionnaires did not show significant benefits of eye-hand transitions
over hand-only techniques regarding arm fatigue and perceived
workload.

5.6.2 Direct vs. Remote Hand Mappings. When comparing Gaze-
Grab to other techniques that allowed remote handmappings (specif-
ically RemoteHand), we observed substantial differences in perfor-
mancemeasures and subjective feedback.GazeGrab required amuch
longer time frame to re-position an object than RemoteHand and
caused significantly higher perceived arm fatigue. This was mostly
because, as indicated in previous research, “direct manipulation”
techniques are imprecise in nature [36]. Participants found it difficult
toplace theobject in the correctpositionbyholding itwith their arms.
Further, participants suggested thatGazeGrabwas cumbersome as it
required themto“suspend” their arms in theair toperformthemanip-
ulation (in contrast with the techniques based on indirect mapping
which allowed them to manipulate the target with their arms down).
Interestingly,GazeGrab induced lesshand rotation thanRemoteHand.
In fact, according to themean value shown in Figure 3,GazeGrab had
the smallest hand rotation angles. This is likely due to the presence of
direct mappings, which leads to users finding it easier to determine
how to optimally rotate an object to the target configuration.

5.6.3 Implicit vs. Explicit Eye-Hand Transitions. When comparing
ImplicitGaze and 3DMagicGaze, we found that they led to similar
empirical performance, while ImplicitGaze required less hand move-
ment and rotation to complete themanipulation task. This difference
wasmost likelydue to the transitionmechanismwechose for 3DMag-
icGaze, which entailed the use of hand movement to snap the target

to the hand position. Our choice was based on Turner et al. [59]
work, where they thought such input structure would demonstrate
“some form of integrity” (as we usually use a final hand manipu-
lation to fine-grain the translation made by gaze input). However,
according to our study results, we found this explicit hand move-
ment can have side effects. It required participants’ hands to move
for longer periods of time and rotate more to achieve the same task
compared to the implicit approach. Even if we change to other mode
switchingmechanisms, like trigger tapping [55], it is likely that such
extra efforts would still be needed for methods based on explicit
transitions. In contrast, implicit transition techniques can be an
ideal solution as they require minimum effort for mode switching.
Our results also showed no issues regarding unwanted snapping (in
other words, not inducing the Midas touch problem [28]) by using
a dynamically-resized safe region.

5.6.4 Effect of Lateral Distance and Depth. As expected, our results
showed that lateral distance influenced the technique performance
in coarse manipulation time, but not re-position time (mostly orien-
tation adjustment). Depth did not have a definite impact on selection
performance, likely due to the differences between the levels not
being substantial (as all of themwere within arm-reach distance).

5.6.5 Summary of Study 1’s Key Findings. Based on the discussion,
we summarize the following key findings from the first study.
• Our results show no evidence that manipulating objects (mainly
translation) based on both eye and hand input (3DMagicGaze and
ImplicitGaze) can offer significant performance benefits in VR
manipulation tasks over the hand-only approach (RemoteHand)
in the primary working space.

• Direct hand mapping (GazeGrab) is less precise and can lead to
more arm fatigue than remote hand mappings (like RemoteHand).
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However, it might help users to determine how to optimally rotate
an object to the target configuration.

• Implicit transition (ImplicitGaze) and explicit transition (3DMag-
icGaze) led to similar task performance, while implicit transition
required less effort (e.g., hand movement) than explicit transition.
In particular, a dynamically-resized safe region was shown to be
useful as there was little evidence of the Midas touch issue [28].
After assessing technical performance and initial user feedback in

Study 1, we further extended the evaluation to a larger space which
requires the use of locomotions in Study 2.

6 STUDY 2: APPLICATION
In this second study, we aimed to assess how gaze-supported manip-
ulation techniques perform under a larger environment and when
applied to realistic workflows. We also wanted to compare our tech-
niques with Virtual Hand (hand input only for selection and manip-
ulation), which is currently the most commonmethod for manipu-
lating objects. We also measured user experience and collected user
feedback, which can help adapt the gaze-supported techniques to
real use cases.

6.1 Participants and Apparatus
We recruited eight university students (3 women, 5 men) with pre-
vious experience in 3D modeling (1-8 years, mean = 2.75, using
software like SolidWorks, 3DSMAX, CAD, Rhino, and Unity). We
hope that more fruitful discussions could be triggered with experi-
enced/expert users in the relevant domain. Their ages were between
21-29 years (mean = 24.4). All of themwere right-handed. We used
the same device as in the previous study.

6.2 Interaction Scenario
Participantswere instructed to reconstruct an empty room following
aminiature, as shown in Figure 4, using themanipulation techniques.
However, theywere not required to followhow theminiature looked
like precisely; rather, it was used as a guide for them to make their
own creations. Participants could move around the room using the
teleportation mechanism, choose desired objects from a prefab list
(see Figure 4), and manipulate (translate, rotate, and scale) the se-
lected item. This differed from the first study, which controlled the
participants in a static position (within primary working space) and
had specific time-controlled task requirements. In this interaction
scenario, we emphasized the “design-by-yourself” concept, where
the techniques were integrated into users’ own workflow and cre-
ative experiences [75]. Similar applications include Mozilla Hubs
[25] or Minecraft VR [38], where users/players can decorate/build
virtual space with different objects/building blocks.

6.3 Procedure
The whole experiment lasted approximately 60 minutes in total.
Participants first completed a demographic questionnaire. Then,
participantswere briefed about the task and program functionalities,
andwere asked to put on the headset on and started interacting with
the virtual space. The whole interaction experience was divided into
five sessions (four gaze-supported techniques and virtual hand were
presented in a randomized order). During each session, they learned
about amanipulation technique and performed the task as described

Figure 4: Participants were instructed to construct an empty
room following a miniature (left) with the gaze-supported
manipulation techniques. Theywere able to teleport around
the room, select objects from a prefab list (right), and
manipulate (translate, rotate, and scale) the selected item.

Technique Pragmatic Hedonic Overall
GazeGrab 0.66 0.84 0.75
RemoteHand 0.21 -0.25 -0.02
3DMagicGaze 0.31 0.94 0.63
ImplicitGaze 0.68 1.10 0.89
Virtual Hand -0.13 -0.63 -0.38

Table2:Theresults fromtheshortversionofUserExperience
Questionnaires (UEQ-S) which outline the pragmatic qual-
ity, hedonic quality, and overall quality of each Technique
(higher scores are better).

in the previous section. At the end of each session, they completed
a short version of the User Experience Questionnaire (UEQ-S) [47]
and answered a set of structured questions to provide their overall
feedback towards the technique. The structured questions asked
about the strengths and weaknesses of each method. After finishing
the five sessions, they were also invited to provide their opinions
regarding the different design features employed in the techniques
(hand-only vs. hand-eye, direct vs. remote mappings, and implicit vs.
explicit transitions). Responses were recorded for further analysis.

6.4 Results
The results from UEQ-S are summarized in Table 2, which indicates
that the gaze-supported techniques performed better comparing to
Virtual Hand in terms of pragmatic, hedonic, and overall quality.
Next, we provide a summary of participant interview responses
grouped by technique.

6.4.1 Gaze Grab. As a way of hand-eye coordination, GazeGrab
has a unique feature of snapping the object to the hand position
when starting the manipulate phase. A number of participants (N=5)
commented that it was “efficient” and “convenient” way of achieving
this; “I normally moved to the destination first, and then brought the
object to me with the technique. It was very quick.” (P2). However, a
couple of participants mentioned that “the efficiency of GazeGrab
was highly dependent on the accuracy of teleportation method, which
was sometimes not very accurate.” (P3). The inaccurate teleportation
might require users to re-adjust their standing position when using
GazeGrab. Two participants also said that the technique “required
some learning”. Notably, P5 noticed that “when object flew to me,
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especially big objects like a sofa, I was afraid that it might hit me.”, and
P5 also found it challenging to fine-grain the position of an object
as “the object would fly to my hand again when pressing the trigger,
and my previous effort was wasted”.

6.4.2 Remote Hand. Although this technique has the ability to ma-
nipulate objects remotely, almost all participants (N=7) noted thatRe-
moteHand was inconvenient when moving objects that were at a far
distance; “It seemed that the object onlymoved a little bit when Imoved
my arms.” (P2). “This was fatiguing.” (P1). Moreover, P5 mentioned
that “when I tried to move the object for a large distance, my arm’s
movementmight also cause the rotation of the object. So I had to rotate it
back.” Despite these limitations, most participants (N=7) felt Remote-
Hand was accurate for manipulation. In addition, P5 commented on
the agency provided by the technique “manipulating objects remotely
made me feel that I was taking control of the whole space”.

6.4.3 3DMagic Gaze. Half of the participants (N=4) explicitly men-
tioned that, with the help of their eyes, 3DMagicGaze was quick
for long-distance object translation. However, a few participants
(N=5)mentioned someflaws in the hand confirmationmechanism: “I
needed time to get used to this (handmovement for confirmation).” (P6)
“For small ormediummovement, itwas sometimes hard forme to decide
whether using hand or gaze.” (P5). Additionally, some participants
(N=5) thought the switching between eye and hand input was con-
fusing at times: “I often forgot using hand to bring (snap) the object.”
(P7) “I found sometimes wavingmy arms did not make the quick trans-
formation (snap). For example, I wanted to put a bed adjacent to the
wall, but it was hard to achieve—the movement was either too small or
too large” (P4). The later was because the gaze cursor was still inside
the safe region, so the hand snapping did not happen. In contrast, P8
said that “I did not feel any big difference comparing to ImplicitGaze.”
and indicated that hand movement was natural for confirmation. P6
further said 3DMagicGaze felt more “stable” than ImplicitGaze, since
the selected object would not frequently snap to the gaze direction.

6.4.4 Implicit Gaze. Participants (N=7) felt that ImplicitGazewas
“novel” and “efficient”; “I can just stand still andmanipulate the objects
quickly.” (P4). However, several participants (N=4) also commented
about the difficulty of using eyes to achieve precise manipulation.
“When I was searching for the places, the object, especially the big ones,
would block my view. Also, there were some unwanted movements
caused by eyes.” (P3). On the positive side, P7 commented that “I
thought eye movement might cause some randommovements before
using it, but it actually didn’t when trying.” Noticeably, some partici-
pants (N=3) thought itwas not as easy tomove the object in the depth
dimension with ImplicitGaze, as the movement in that dimension
is particularly slower than lateral directions.

6.4.5 Virtual Hand. Almost all participants (N=7) thought Virtual-
Hand was natural and realistic; “I always know how to do it (the ma-
nipulation), as that’s what we do in everyday life.” (P3). The technique
also feltmore “controllable” due to these characteristics. However, all
participants (N=8) acknowledged that VirtualHand was “fatiguing”
and “not efficient enough for long-distance translation”.

6.5 Discussion
In this section, we discuss and summarize the results and provide
solutions for the identified limitations and design implications that
can help future implementation of gaze-supported manipulation
techniques in VR.

6.5.1 Hand-Only vs. Eye-Hand Manipulation. While the benefit of
rapid eye movement for object translation is not salient in the pri-
mary working space (as shown in the first study), for manipulating
faraway objects in a larger environment, participants clearly pre-
ferred the efficiency and convenience of gaze-hand combination for
coarse translation. Indeed, theoretically, an exact control-display
mapping (1:1) of handmovement has little effect (visually) on objects
located in a far distance from a user’s perspective. In such a situation,
it is thus more ideal for translating the target according to visual
angles (as what gaze input does), rather than exact distancemapping
(as what hand input does in this research). Another solution, which
can enhance hand-only approaches (e.g., RemoteHand) in the manip-
ulate phase is to provide hand amplification (e.g., [69]), where the
hand movement is amplified using specific functions, so the object
appears to move a larger distance.

However, eye-handmanipulation became less useful for close and
largeobjects, as itmight occlude theuser’s line-of-sight (since the tar-
get follows gaze),whichmade location searchingdifficult. Aquickfix
could entail making the target undermanipulation semi-transparent
[11], so that the user’s view is not fully-blocked. Some participants
also found hand-only manipulation to be more manageable, as they
reported being more used to this type of input.

6.5.2 Direct vs. Remote Hand Mappings. With the feature of bring-
ing faraway objects to users’ hands (turns a remote object to direct
hand mapping), GazeGrab shifted how participants interacted with
objectswhencompared to theother threegaze-supported techniques.
With remote-mapping basedmethods like ImplicitGaze, participants
tended to remain in the same standing position and transferred the
items remotely. In contrast, with GazeGrab, they were likely to first
move to a new target position and then bring the object to their
location. As reported by the participants, this transformation was
efficient in transporting distant targets but can be cumbersome for
close ones. Repetitive snapping close objects to hands can make
the adjustment difficult, and it is likely better to disable this func-
tion when the target is within arm-reach distance. Furthermore,
users needed to re-adjust their standing position if there was any
inaccuracy caused by the locomotion technique. If the VR locomo-
tion/teleportation [3] is sufficiently smooth, efficient, and accurate,
the snap-to-hand function could be useful by translating distant
objects along the depth dimension.

Another issuebrought bydirect handmappings is that if theobject
under manipulation is quite large, participants found it difficult to
transform the object into a satisfiable configuration as a significant
part of their view is occupied by the item. Some participants also
reported that it made them feel unsafe as they thought the object
mightcollidewith theirbody.Potential solutions to these issuescould
entail providing a mini-map [12, 57] as an overlay to give an non-
occluded vision to support fine-grained transformation and making
the oversized object semi-transparent to minimize its intrusiveness.
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6.5.3 Implicit vs. Explicit Eye-Hand Transitions. Participants’ opin-
ions differed in whether it would be more beneficial to apply explicit
or implicit transitions between eye and hand input. The advocates of
the explicit transition mechanismmost appreciated its robustness;
the rapid eyemovement would not frequently bring the object to the
user’s facingdirection.Although thedynamically-resized safe region
was reported as being useful (ImplicitGaze did not produce random
gaze-likemovement for objects), itwas not able to handle rapid, long-
distance searching actions, and could occlude participants’ view by
snapping the target to the gaze location. As mentioned previously,
making the target semi-transparent would mitigate this issue.

On the other hand, someparticipants found that using handmove-
ment to confirm the gaze actionwas somewhat redundant.Moreover,
because of the separate nature of gaze and hand input, participants
noticed that it was sometimes challenging to determine whether
theywere using hand or gaze input. Additionally, it can be confusing
for users when they actually want to use gaze to translate an object,
but because the gaze point is still located inside the safe region, only
the handmovement (whichwasmeant to be a trigger action) affected
objects’ location. In these scenarios, it would be helpful to provide
a small widget to indicate which input modality is taking control of
the object for explicit transition based techniques.

Also, as suggested by participants, it would be beneficial to pro-
vide hand amplification [69] for both ImplicitGaze and 3DMagicGaze
in the depth dimension to speed up the translation along the z-axis.

6.5.4 Gaze-Supported Techniques vs. Virtual Hand. As indicated in
Table 2, the results from the user experiences questionnaire suggest
that the current market-available solution (Virtual Hand) was not
sufficient for target manipulation tasks in VR, while gaze-supported
techniques lead to pragmatic and hedonic improvements. Despite
being “natural” and “realistic”, VirtualHandwas seen as not being an
efficient, convenient, and comfortable solution for long-term object
manipulation in VR.

7 DESIGN IMPLICATIONS
Wederived a set of design implications for future gaze-supportedma-
nipulation techniques in VR.We do not advocate a one-size-fits-all
technique, as different design features canbeuseful for different envi-
ronments and task proposes. Instead, we summarize their strengths,
possible applications, and provide potential compensation for their
weaknesses.
• While embedding gaze input (like ImplicitGaze and 3DMagicGaze)
might not offer significant performance benefits for manipulating
(translating) objects that are within the primary working space
(that is, all targets are located in front of the user and within arm-
reach distance), it can be useful for a larger environment with
distant objects.

• If gaze input is used for object selection and only hand input is
used for manipulation, consider adding hand amplification (e.g.,
[69]) when users need to manipulate objects that are outside of
the primary working space. Otherwise, it can feel tiresome to
manipulate remotely gaze-selected objects.

• The hand-eye coordination strategy which snaps the target to the
hand position when selection is triggered is efficient for bringing
distant objects to the user. However, this functionmay require the
user to teleport to different places frequently when working in a

large environment. Therefore, a complementary precise and con-
venient teleportation mechanism is needed. Additionally, we sug-
gest disabling the snap-to-hand function for objects within arm-
reach distance, as repetitive snapping close objects to hands can
cause confusion and make the fine-grained adjustment difficult.

• While manipulating an object directly via hands is intuitive, it
may lead to more arm fatigue as users need to hold their arms
in the air. One could consider minimizing the duration of using
such direct-mapping and use indirect-mapping techniques (like
RemoteHand) which allow users to rest their arms under a com-
fortable position. Also, large objects can easily occlude users’ view
and pose difficulties for accurate manipulation. Therefore, provid-
ing an accompanying mini-map (e.g., [57, 73, 74]) as an overlay
would provide an overview of the environment, while making the
oversized object transparent to reduce intrusiveness.

• Providing an implicit transition between gaze and hand input
(such as ImplicitGaze) can enable the smooth and concurrent trans-
formation. It would be useful to consider applying a dynamically-
resized safe region (as used in this research) to reduce the random
movement of objects caused by eye saccades. Note there are also
otherdesignopportunities to enable implicit transitions. For exam-
ple, designersmay choose to use a probabilistic/heuristicmodel to
implicitly determine whether gaze or hand should take control of
the target. Also,we suggestmaking the object undermanipulation
semi-transparent to avoid visual occlusion while searching.

• Explicit transition (like 3DMagicGaze) enables robust control over
the effect of gaze on objects. However, some effort is required
in performing the ‘switch’ command and users may be unsure
about whether to make a ‘switch’ or not.We recommend adding a
small widget to indicate which input modality is currently taking
control of the manipulation.

• For techniques that use both gaze and hand for manipulation (e.g.,
ImplicitGaze and 3DMagicGaze), hand amplification in the depth
dimension would be beneficial to speed up the translation along
the z-axis when interacting with objects outside of the primary
working space.

8 LIMITATIONS AND FUTUREWORK
We have identified several limitations in this research. First, we did
not embed techniques that enable non-linear mapping of hand in-
put [69], as our primary focus was gaze input. Hand amplification
can interplaywith or enhance gaze input, and it would be interesting
to investigate how they influence one another. Second, we did not
explore the long-term usage of gaze-supported manipulation tech-
niques. For instance, if 3D modelers used gaze input every day, they
would probably find even more efficient ways of using them. Third,
we did not test themethods alongsidemore complex sculpturing and
modeling tools/functions (like smoothing and inflating an object).
Further research can extend the gaze input modality to accompany
more advanced manipulation functions. Fourth, we treated gaze as
a 2 DoF modality and thus explored more of its usage for translating
objects in the lateral direction. However, we acknowledge that there
is a potential of using gaze for rotation and scaling with novel ap-
proaches. Lastly, as head gaze canbe a cheaper solution than eye gaze
for current VR systems, it is worth exploring if head gaze possesses
similar features as eye gaze for object manipulation.
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9 CONCLUSION
In this research, we explore gaze-supported 3D object manipulation
in VR. Specifically, we investigate how different ways of integrat-
ing, coordinating, and transitioning gaze and hand input can aid
the existing approach based on the virtual hand. Results from two
user studies evaluating and comparing four techniques regarding
their usability and efficiency show that gaze input does not offer
significant performance benefits for object manipulation in the pri-
mary working space (when all targets are located in front of the user
and within arm-reach distance), but can be useful for larger spaces
with distant objects. Gaze input was also shown to mitigate the arm
fatigue issue, and different integration, coordination, and transition
strategies can provide benefits for buildingmore usable and efficient
objectmanipulation techniques.Ourwork contributesnovel insights
regarding multimodal interfaces with gaze and hand input that can
enhance existing and future 3D objectmanipulation solutions inVR.
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Chapter 6

BLENDING ON-BODY AND MID-AIR INTERACTION

6.1 Summary
In this work, we propose design patterns and interaction techniques that leverage combined
on-body and mid-air interfaces for object selection and manipulation in VR. The on-body space
(i.e., body surfaces) offers new interaction possibilities: it is always available, allows eyes-free
targeting, and provides a support surface for input. Like gaze, on-body space has great potential
to complement and augment Raycasting and Virtual Hand. With our designs, a user may use
thumb-on-finger gestures, finger-on-arm gestures, or on-body displays with mid-air input
to complete a 3D interaction task. We probed into the design space by developing various
techniques for different selection and manipulation tasks (e.g., occluded selection, group
selection, and one degree-of-freedom transformation) and conducted an expert evaluation
study to elicit immediate design issues with the novel combination.
The study results and our implementations demonstrated that the proposed solution could be
used for small, distant, and occluded target selection. The techniques could enable faster and
more precise manipulation by changing the control-display ratio and isolating the transfor-
mations. They also created novel and fulfilling user experiences by empowering a multitude
of helpful functionalities for selecting and manipulating objects in a sample 3D modeling
application.

Env. Task
Small Distant Occluded Effectiveness Efficiency Ergonomics Experience Expressivity
✓ ✓ ✓ ✓ ✓ ✓ ✓

6.2 Article III
This is the author’s version of the work for your personal use only (i.e., not for redistribution).
The definitive version can be found in IEEE Xplore Digital Library:
Difeng Yu, Qiushi Zhou, Tilman Dingler, Eduardo Velloso, and Jorge Goncalves. "Blending
On-Body and Mid-Air Interaction in Virtual Reality." In 2022 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR), pp. 637-646. IEEE, 2022. https://doi.org/10.1109/
ISMAR55827.2022.00081
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Figure 1: Sample interaction techniques based on BodyOn. (A) A user is scaling a vase towards a specific direction by performing
thumb-on-finger gestures and mid-air movements. (B) A user is rotating a blue planet around and/or moving it towards a red planet
by combining bimanual thumb-on-finger gestures with mid-air input. (C) Finger-on-arm gestures and mid-air input enable users to
translate a fox with one degree of freedom. (D) Users can teleport to different locations by manipulating an on-body minimap display.

ABSTRACT

On-body interfaces, which leverage the human body’s surface as an
input or output platform, can provide new opportunities for designing
VR interaction. However, it remains unclear how on-body interfaces
can best support current VR systems that mainly rely on mid-air
interaction. We propose BodyOn, a collection of six design patterns
that leverage combined on-body and mid-air interfaces to achieve
more effective 3D interaction. Specifically, a user may use thumb-
on-finger gestures, finger-on-arm gestures, or on-body displays with
mid-air input, including hand movement and orientation, to complete
an interaction task. To test our design concepts, we implemented
example interaction techniques based on BodyOn that can assist
users in various 3D interaction tasks. We further conducted an expert
evaluation using the techniques as probes to elicit immediate design
issues that emerge from the novel combination of on-body and mid-
air interaction. We provide insights that can inspire and inform the
design of future 3D user interfaces.

Index Terms: Human-centered computing—Human Computer
Interaction (HCI)—Interaction Paradigms—Virtual Reality;

1 INTRODUCTION

Virtual reality (VR) technologies, or immersive technologies in
general, represent a significant paradigm shift from the traditional
PC-based interaction by putting users “into” the digital content.
Whereas a large number of VR techniques enable users to interact
with content located within a virtual environment through mid-air
input (like hand movement or orientation) [1, 41], interfaces that
leverage users’ on-body spaces—the virtual representation of the
human body’s surfaces—are often overlooked.

The on-body space offers new interaction possibilities for VR sys-
tems: it is always available [28,29], allows eyes-free targeting [26,53],
and provides a supporting surface for input [25, 28]. However, the
design space of how on-body interaction can be incorporated into

*e-mail: difeng.yu@student.unimelb.edu.au
†e-mail: qiushi.zhou@unimelb.edu.au
‡e-mail: tilman.dingler@unimelb.edu.au
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current mid-air interaction workflows in VR systems is largely under-
explored [8]. While on-body interfaces can be appealing, they cannot
fully replace the current paradigm based on mid-air interaction. For
instance, mid-air techniques are more appropriate than on-body ones
to enable 3D translation and movement of objects in VR. Therefore,
it is critical to explore the synergies across these input modalities
to best leverage their strengths and overcome their limitations.

To explore this opportunity, we propose BodyOn, a design space
consisting of six design patterns for integrating on-body interfaces
into current mid-air interaction workflows in VR headsets (Figure 1).
In contrast to previous work that considered the on-body space as
a standalone input and output modality [5, 7, 22], BodyOn takes a
unique perspective by combining both on-body and mid-air interfaces
to expand the design space of VR interaction techniques. Within this
design space, a user may use thumb-on-finger gestures, finger-on-arm
gestures, or on-body display in combination with mid-air input,
including hand movement and orientation, to accomplish various
VR interaction tasks (see Figure 1 for examples).

We instantiate this design space through a set of example interac-
tion techniques based on BodyOn to accomplish canonical interaction
tasks in a 3D modelling system, including selection, manipulation,
navigation, and system control (e.g., menu control and mode
switching). These techniques served as probes to showcase possible
designs with BodyOn, and allowed us to form a testbed to verify the
feasibility and applicability of the high-level design concepts. We
then conducted an expert evaluation to gather feedback about the
implemented interaction techniques. The study allowed us to identify
immediate design issues with the new combination of on-body and
mid-air interactions. For example, we found that when users focus on
manipulating objects in the mid-air space, they can ignore on-body
visual feedback. We discuss the lessons learned from our experience
regarding future systems that may benefit from BodyOn.

The main contributions of our work are:

• BodyOn: a collection of six design patterns for inspiring new
3D UI designs that combine on-body and mid-air interactions
in immersive VR space.

• Example interaction techniques to explore the design space and
showcase how to solve 3D interaction tasks at various complexity
levels with BodyOn.

• Insights based on an expert evaluation for future systems that
leverage both on-body and mid-air interactions.



2 RELATED WORK

BodyOn enhances current mid-air interaction techniques in VR
systems by incorporating on-body interaction.

2.1 Mid-Air Interaction
Mid-air interaction is the most common form of interaction in con-
temporary headset-based VR systems. It allows users to control and
manipulate digital content in VR through mid-air gestures and move-
ments, typically using game controllers or bare hands [14, 35, 49].
Previous research has identified mid-air interaction as being natural,
straightforward, and particularly suitable for manipulating virtual
contents in 3D space given its high degree-of-freedom input [36].
However, it has also long been criticized for being imprecise [4, 41],
fatiguing [32], and for lacking tactile feedback [20].

To further improve the usability and increase the interaction
vocabulary of mid-air interaction, researchers have explored
low-effort approaches with indirect mapping of input (e.g., a relaxed
arms-down position [12, 40]) and employed computational models
(e.g., based on selection distribution [56]) to improve its accuracy.
Others have leveraged the potential benefit provided by multi-modal
input and have incorporated other modalities (such as eye gaze [57],
smartphones, and tablets) into the interaction [11]. For example,
BISHARE [59] investigated joint interaction paradigms between
smartphones and AR headsets to enrich AR interaction experiences
by distributing system input and virtual content across both platforms.
Other recent research including SymbiosisSketch [3], TabletInVR [48],
and VRSketchIn [16] contributed new design spaces using on-tablet
input to assist mid-air input in sketching and modelling in VR. In this
work, we focus on using on-body interfaces to enhance and augment
mid-air bare-hand interaction in VR headsets.

2.2 On-Body Interaction
On-body interfaces leverage the human body as an input/output
platform [8, 28, 29]. Compared with smartphones and tablets,
previous studies have identified that on-body interfaces provide
the following unique benefits: they are always available for
interaction [28, 29], afford a higher sense of agency [9, 15], and
enable more accurate eyes-free targeting [26, 53]. Additionally, they
support additional haptic feedback [25, 28], which has the potential
to enable more precise and less physical demanding input than
mid-air input due to the direct physical contact with the user’s own
body [4, 30]. For these reasons, on-body interaction holds a lot of
potential for supporting mid-air interaction in VR headsets. However,
on-body interfaces usually lack direct support for providing 3D input.

Existing literature has proposed several on-body interaction
techniques [23, 34, 44]. For example, Armura [28] explored a set
of possible interactions like menu navigation, page-turning, and
peephole display using hands and arms as projection surfaces.
PalmGesture [52], PalmType [51], and DigiTouch [54] all considered
the use of on-palm input for text entry and widget-based interaction
in AR/VR headsets. SkinWidget [5] demonstrated on-forearm touch,
drag, slide, and rotation gestures for interacting with an on-arm menu
in VR. BodyLoci [22] and Tap-Tap Menu [7] further used tapping
gestures to interact with menus and buttons located on the whole
body in VR. DigiGlo [13] proposed palm surfaces as a display in VR.
Body-referenced input (interfaces that are attached close to a user’s
body surface) has also been explored in VR [6, 38, 55].

More relevant to our work are interaction techniques that consider
combining both on-body and mid-air interfaces. BodyScape [50]
evaluated a technique that employs mid-air gestures for pointing
and on-arm tapping for selection confirmation. This work opened
up new opportunities for combining the two interaction modalities.
WatchSense [46] leveraged smartwatch-based fingertip tracking to
enable combined mid-air and touch interaction by using the thumb
as a base for touch input and the index finger for mid-air input. Ens
et al. [18] integrated mini-scale on-finger input (for example, on a

ring device) with mid-air gestures to allow 3D content manipulation
by varying the temporal relationship of the input.

In summary, existing research has shown great promise of on-body
interfaces, but few works have demonstrated their use for supporting
mid-air interactions. Our research takes these ideas further by
exploring how on-body interfaces should be incorporated into the
mid-air workflow.

3 BODYON

BodyOn is a collection of six design patterns that integrate on-body
interfaces into current mid-air interaction workflows in VR headsets.
In this section, we first present a design space that leverages on-body
and mid-air interfaces as input and output modalities. We then
identify design opportunities in the literature that motivate the design
of BodyOn and detail the six design patterns which are templates
of design that can be adopted to solve a multitude of interaction tasks.

3.1 Design Space
Both on-body and mid-air gestures can serve as modalities to capture
user input or display output. We present a design space that connects
on-body and mid-air interfaces in different input and output forms
for interaction (see Figure 2 left).

The design space has two dimensions. One dimension is input: on-
body, mid-air, and the combined on-body + mid-air information can
all be used as input. In the scope of this research, on-body input lever-
ages body contact information (on-body touch, gestures, or deforma-
tions [8]) as an input modality for interaction, while mid-air input em-
ploys mid-air gestures including hand translation, rotation, and rela-
tion as an input modality. The combination of on-body and mid-air in-
put means that the interaction is a result of inputs from both modalities.
For example, a user can achieve this by performing mid-air gestures
with one hand and on-body gestures with the other hand for input. The
other dimension of the design space is the output: both on-body and
mid-air can be used as output. That is, virtual contents can be either
attached to body surfaces or to the mid-air space as displayed output.

Based on the design space, we identify input → output mappings
that combine on-body and mid-air interfaces, including On-Body →
Mid-Air, Mid-Air → On-Body, and On-Body + Mid-Air → Output
(on-body or mid-air). Additionally, we envision virtual content to be
transferred between on-body and mid-air space for leveraging unique
properties of the displays (Output: On-Body ⇀↽ Mid-Air). Because
this work focuses on blending on-body and mid-air techniques, we
exclude conditions where there is only one single input and output
modality (i.e., On-Body → On-Body and Mid-Air → Mid-Air). We
scrutinize the relevant mappings in the next section.

3.2 Synthesis of Prior Work and Design Opportunities
We have identified possible mappings between on-body and mid-air
interfaces for input and output. We further explore new design oppor-
tunities by examining how existing research fits into our design space.

3.2.1 Manipulating Mid-Air Content with On-Body Input
For the On-Body → Mid-Air mapping, prior research has proposed
techniques that leverage finger-on-palm gestures for text entry or
application control (e.g., sliding fingers to increase the volume of an
application) [51, 52, 54]. However, little work has employed on-body
input for manipulating objects in 3D mid-air space. This is understand-
able if we consider the affordance of on-body input—body surfaces
naturally afford 1D, 2D, but only limited 3D input based on their ge-
ometry and how they are positioned and stretched [10,43]. Therefore,
we deem existing applications that mainly use on-body input for 2D
content manipulation appropriate and sufficient for this mapping.

3.2.2 Manipulating On-Body Content with Mid-Air Input
A few works have explored the Mid-Air → On-Body mapping [37].
For example, Armura [28] allows users to flip a page displayed on the
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Output: On-Body ⇀↽ Mid-Air Not available

Figure 2: Design space and key literature summarization.

hand with swiping gestures. DigiGlo [13] enables users to interact
with games displayed on their hands through various hand gestures in
VR. Wrist-referenced interfaces [38, 55] allow users to interact with
UIs displayed on or close to their wrist. While these works focus on
using hands or arms as displays, we argue that body surfaces afford
larger display areas if considering other body parts like the torso, legs,
feet, etc. Different body parts can be designed to convey different
semantic meanings of an interaction. Thus, one underexplored space
is to use mid-air input to interact with virtual content displayed on
body surfaces other than on hands and arms.

3.2.3 Combining On-Body and Mid-Air Input

Existing works have considered combining on-body and mid-air input
for interaction (On-Body + Mid-Air → Output). BodyScape [50]
uses one hand for mid-air pointing and the other hand performing
on-arm tapping for selection confirmation. WatchSense [46] uses
a thumb for on-hand touch (which creates a stable base) and an index
finger for mid-air controls like zooming in/out an image. Ens et
al. [18] use thumb-on-index finger tapping and swiping gestures to
provide additional capabilities for mid-air input. While these works
demonstrate the potential usefulness of combining on-body and mid-
air input, there is still no cohesive view on how on-body and mid-air
input should be combined, especially considering the bimanual input
capability of hands [24]. Leveraging the feature that each hand can
perform separate or combined on-body and mid-air actions, a user
interface may create a richer set of interaction vocabularies to afford
more complex interaction tasks in VR systems. Therefore, one design
opportunity here is to scrutinize how on-body and mid-air input can
be combined, considering the bimanual input property of hands.

3.2.4 Content Transfer Between On-Body and Mid-Air Space

Little research has explored content transfer between on-body and
mid-air space (Output: On-Body ⇀↽ Mid-Air). However, mid-air and
on-body spaces have unique display affordances. The mid-air space
provides an extensive area for displaying 2D or 3D virtual content [19].
However, because virtual objects and user interfaces are anchored to
the world space, unwanted occlusions may occur if users change their
viewpoint (e.g., an element of interest is occluded by a wall [58]). In
contrast, when a UI display is attached to the body surface, it follows
the user’s movement when travelling inside virtual environments and
can be accessed once the user pays attention to it. For example, when
a user is walking, the on-body displays attached to their wrists, belly,
or feet will always be available for interactions when the user looks at
them. Therefore, one design opportunity is to enable content transfer
between the two displays to better leverage their strengths.

3.2.5 Summary

In sum, we conclude with three design opportunities. (1) On-Body +
Mid-Air → Output: combining on-body and mid-air input for interac-
tion, especially considering the bimanual input property for a rich set
of interaction vocabularies, (2) Mid-Air → On-Body: extending the
display of virtual contents to body parts other than arms and hands, and
(3) Output: On-Body ⇀↽ Mid-Air: enabling content transfer between
the two interfaces to better leverage their unique display properties.

3.3 Design Patterns

Based on the identified design opportunities, we propose BodyOn,
a set of six design patterns that combine on-body (OB) and mid-air
(MA) interfaces for interactions in VR headsets (see Figure 3). The
design patterns leverage combined OB and MA input (P1-P4), MA
input for OB content manipulation (P5), and content transfer between
OB and MA space (P6).

3.3.1 Combining On-Body and Mid-Air Input

We envision that OB and MA input can be combined in various ways
for interaction, especially considering the bimanual input property
of hands. In this research, we restrict the input area of OB interfaces
to hands and arms because they are more comfortable and socially
acceptable by users across multiple poses [10, 27, 50].

Under this constraint, we identify two types of OB inputs that are
suitable for combined OB and MA input: thumb-on-finger (TOF)
input and finger-on-arm (FOA) input. TOF input leverages contact
information between a thumb and other fingers on the same hand
to issue an input. FOA input uses contact information between the
fingers of one hand and the arm of the other hand to command input.
Users can perform a diverse range of gestures including tapping,
sliding, and drawing shapes, and information like contact locations,
hardness, and gestures can be employed to construct input signals.

TOF input can be performed with one hand or both hands, and,
concurrently, MA information of one or both hands can be leveraged
for input. FOA input require the involvement of both hands, and the
hand that does not perform FOA input can be used to provide MA
input. These combinations result in the following four patterns.

Pattern 1 - Single Hand: MA + TOF. Users perform single hand
TOF input and MA input together to interact with virtual objects.
While previous research on TOF gestures mostly focused on gesture
recognition [33, 45] or utilizing these gestures for interactions like
text entry [54], our work emphasizes the incorporation of the TOF
input into the MA input flow. In this case, MA information (i.e., hand
position and/or orientation) is combined with TOF input to enable a
richer set of interactions. For example, when manipulating an object
with MA input, TOF input can provide another layer of control to
adjust the object’s movement speed.

Pattern 2 - Both Hands: MA (One Hand) + TOF. Users perform
MA input with one hand and TOF input with the other hand or both
hands. The pattern involves both hands, while only one hand’s MA
information (position and orientation) is used for input. The hand
that issues MA input can work on a primary 3D interaction task, and
the TOF input can act as background support for the primary task.
For example, a user is drawing 3D curves with one hand in a virtual
space, and the user can perform TOF input on the other hand to
quickly change the drawing colours in an eyes-free manner without
disturbing the workflow of the drawing hand.

Pattern 3 - Both Hands: MA (Both Hands) + TOF. Users carry
out MA input with both hands and use TOF input on one or both of the
hands. In this pattern, the MA information from both hands, including
their locations, orientations, and relations, is used. Simultaneously,
TOF input comes into play (performed by one or both hands) to un-
cover more complex interactions that are possible in 3D VR environ-
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Figure 3: BodyOn is a collection of six design patterns that combine on-body and mid-air interfaces for new VR interactions. P1 leverages
single-handed thumb-on-finger (TOF) input and mid-air input (i.e., translation and orientation) for user input. P2 involves both hands and uses
TOF input to support mid-air input performed by the primary hand. P3 employs TOF to support mid-air input performed by both hands. P4
uses finger-on-arm input with one hand on the other arm, while the latter is used for mid-air input at the same time. P5 utilizes mid-air input
for interacting with on-body displays. P6 enables content transfer between on-body and mid-air space.

ments. The underlying concept is similar to many asymmetric biman-
ual techniques where one hand acts as a spatial reference and the other
is used for manipulation [24]. For example, using the MA information
from both hands may allow users to rotate an object (holding by one
hand) around a point (attached to the other hand) or move an object to-
wards a particular point. TOF input can act as a mode switching trigger
to allow the transformation to happen between those two possibilities.

Pattern 4 - Both Hands: MA (Hand 1) + FOA (Hand 2). Users
perform FOA input with one hand on the other arm, while the latter
is used for MA input at the same time. In this pattern, the arm that
performs MA input also serves as a place for FOA input. This is a
novel approach as previous works that use FOA gestures use them
as a sole input modality [5, 39]. As an example of where this pattern
would be useful, users may want to translate a 3D cursor [58] to
select objects with different depths by sliding fingers on the arm and
pointing in the target direction.

3.3.2 Manipulating On-Body Content with Mid-Air Input
While previous works have explored OB displays mainly on hands
and arms, we want to expand the design space to consider content
display on other body parts such as the torso and feet. Therefore, we
summarize the following pattern.

Pattern 5 - MA Input + OB Display. Users use MA input tech-
niques (like Raycasting, remote virtual hand, or distant triggering) to
interact with OB displays. While the appropriate areas for direct OB
input are restricted to hands and arms, OB displays can be extended
to other body parts which can benefit users with their unique features
(e.g., inherently following the user’s movement). Thus, an alternative
solution can be to use MA input to interact with such OB interfaces
remotely. For example, users can point and select a virtual OB widget
and move them across different body parts. They can also trigger
certain actions remotely by putting one hand close to OB widgets.

3.3.3 Content Transfer Between On-Body and Mid-Air Space
We envision that enabling content transfer between OB and MA
space can better leverage the display properties of the two interfaces.
Therefore, we derive the following pattern.

Pattern 6 - Content Transfer. Users can transfer objects between
MA and OB space. For example, users may want to store a model
inside a 3D virtual space as a prefab for later use. In this case, they
can transfer the object from the MA space to their OB space and put
it back to the MA space at a different location.

4 EXAMPLE INTERACTION TECHNIQUES BASED ON BODYON

To examine the feasibility and applicability of the design patterns,
we developed a set of example interaction techniques based on
BodyOn to solve various VR interaction tasks in a 3D modelling
system1. Our goal was to use these interaction techniques as probes

1Open source: https://github.com/Davin-Yu/BodyOn-ISMAR22
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Figure 4: A user can select an occluded target (A) or a group of
targets (B) with finger-on-arm gestures and mid-air pointing.

to test the high-level design concepts from BodyOn. By developing
the techniques, our intention was to sketch “what is possible” with
the new design patterns and map out possible design boundaries.
These example techniques further allowed us to conduct an expert
evaluation to elicit immediate design issues with the new combination
of on-body and mid-air interactions.

For demonstration purposes, we used 3D modelling as a testbed
because it involves canonical interactions (select, manipulate, travel,
and system control [36]) with various complexities in 3D UI design.
For each interaction task, we considered how on-body interfaces can
enhance the current form of mid-air interaction or achieve additional
functionalities by leveraging BodyOn. Table 1 provides an overview
of the techniques and how they fit into the design patterns. Please
also refer to our supplementary video for technique demonstrations.

4.1 Selection
Object selection is a fundamental task in interactive VR sys-
tems [2, 36]. Our interaction techniques based on BodyOn enable
single object selection, occluded object selection, and group selection.

4.1.1 Simple Raycasting Selection
A user can select a target with Raycasting. When the pointer is “on”
the object, the object will flicker to indicate that it is available for
selection. The user can use the same mechanism to select objects
attached to the on-body space (P5).

4.1.2 Occluded Target Selection
We developed a BodyOn-based occluded target selection technique
inspired by AlphaCursor [58]. A user can control a movable cursor
on the virtual ray attached to the index finger of their non-dominant
hand (NDH) with finger-on-arm sliding gestures performed by their
dominant hand (DH) (P4) to reveal occluded objects as the cursor
goes deeper into the environment (see Figure 4A). The object is se-
lected if a pinch gesture is performed with the DH. The object flickers
once the selection ray hits it and gleams golden colour once selected.

4.1.3 Group Selection
A user can select a group of objects by controlling a resizable cursor
attached to the index finger of their NDH. As shown in Figure 4B, the



Table 1: A summary of the implemented interaction techniques and how they fit into the design patterns. Acronyms: TOF (thumb-on-finger),
OB (on-body), FOA (finger-on-arm), and MA (mid-air).

Design Patterns Implemented Interaction Techniques

P1 - Single Hand: MA + TOF Simple object manipulation, adjustable CD ratio
P2 - Both Hands: MA (One Hand) + TOF Stroking, coloring, menu control, object creation and removal
P3 - Both Hands: MA (Both Hands) + TOF Plane, ray, and point techniques
P4 - Both Hands: MA (Hand 1) + FOA (Hand 2) Occluded target selection, group selection, 1 DOF transformation, teleportation
P5 - MA Input + OB Output On-body object selection, travel through minimap
P6 - Content Transfer Object storage and retrieval

user can make the cursor larger or smaller by sliding the DH index
finger on the arm of the NDH (P4). The selection is triggered once a
pinch gesture is performed with the DH, and all the flickering objects
inside the cursor are selected.

4.2 Manipulation
Object manipulation tasks commonly include translation, rotation,
and scaling of objects [36, 41]. Other tasks in relevant applications
(e.g., Google Blocks and Tilt Brush) include stroking, colouring,
object creation or removal, and object storage or retrieval.

4.2.1 Simple Object Manipulation
A common way of manipulating a selected object is to move or rotate
the DH by holding the index finger pinch gesture. The object then
follows the hand movement and rotation with 1:1 control-display
mapping (CD Ratio = 1), as if the object is grabbed by the DH. A
user can manipulate an on-body object in the same way (P5). Users
hear a click sound once they select an object, and the facets of the
selected object then start blinking.

Alternatively, a user can pinch their middle finger for object
translation, pinch their ring finger for object rotation, and pinch their
pinky finger for object scaling (P1) (see Figure 5). The additional
three functionalities isolate the 6 degrees-of-freedom (DOF) virtual
hand manipulation to 3 DOF for translation, rotation, and scaling. It
does not require normal operations of going through multiple stages
like using a DOF-separation widget, which may slow down the perfor-
mance [31]. The quick access may give more control (object scaling)
and precision (by separating the DOF [42]) for manipulation tasks.

4.2.2 Precise Object Manipulation
The techniques also enable precise object manipulation.

• Adjustable CD Ratio. When sliding the thumb from the fingertip
to the root (P1), the control display mapping will change for each
transformation. The CD Ratio changes to 2 when the thumb is
on the second segment of the finger and changes to 1/3 when the
thumb is on the third segment of the finger. This type of control may
allow both precise (with a higher CD Ratio) and rapid (with a lower
CD Ratio) manipulation [21]. Color indicators at fingertips turn to
green, heavy green, or light green from their original state (gray) if
normal, slow, or fast manipulations are enabled (see Figure 5B-E).

• One DOF translation. A user slides the DH index finger on the
arm of the NDH (P4) to control a target moving along a line, which
is defined by the pointing direction of the NDH (see Figure 6A).
By isolating the movement to 1 DOF, the user may have more
precise control over the manipulated target [41].

• Plane, Ray, and Point [31]. This technique uses shapes including
planes, rays, and points to constrain object movement with multi-
ple hand gestures [31] . Our method leverages the combination of
on-body and mid-air bimanual input to achieve those functions (see
Figure 6B-E). A user uses the NDH thumb to select the Plane, Ray,
or Point technique with icons displayed on the NDH middle finger.

A shape (plane, ray, or point) is generated once an index finger pinch
is detected on DH, and the position and orientation of both hands are
then used as references for the techniques (P3). The user may move
the DH to rotate the selected object around a point, around a line, or
along a plane. Alternatively, the user can quickly switch between
different techniques by tapping their NDH thumb on the middle
finger. If a middle finger pinch is detected when using the Point tech-
nique, the selected object moves towards the point rather than ro-
tates around it. The design demonstrates that BodyOn allows more
complex object control via both mid-air and on-body interfaces.
Importantly, the menus displayed on-body make the functions fully
discoverable and do not require remembering new gestures.

4.2.3 Stroking and Coloring
A user can produce a line stroke by holding DH index finger pinch.
Meanwhile, the user can quickly access a colour palette displayed
on NDH fingers and switch between different stroking colours
with thumb-on-finger gestures (P2) (see Figure 7A). In this case,
switching the colour may not disrupt the main workflow of the DH.
A similar process can be followed to recolour an object.

4.2.4 Object Creation and Removal
A user can create an object (sphere, cube, cone, or cylinder) at the
location of the DH by selecting a target shape icon on the NDH and
pinching the DH index finger (P2) (see Figure 7B). The user can also
use the DH index finger pinch to remove an object.

4.2.5 Object Storage and Retrieval
One interaction technique uses the on-body space as a container for
storing and retrieving prefabs (P6). As shown in Figure 7C, a user
can put a group of objects close to a pocket of the virtual avatar and
release the DH index finger pinch to put them “into” the pocket. The
saved prefab (on feet) can then be retrieved via Raycasting (P5).

4.3 Navigation
Teleportation and on-body minimap can be used for navigation.

4.3.1 Teleportation
A user can travel to a target location by teleportation with a parabolic
curve. The initial curve has a take-off angle of 45◦, a horizontal speed
of 2m/s, with a vertical gravity acceleration. The user can perform
a sliding gesture on the arm of the NDH (P4) to adjust the horizontal
speed to maximize or minimize the furthest distance the user can
travel through the teleportation technique.

4.3.2 Travel Through Minimap
A minimap [47] will pop up if a user puts the DH close to their
abdomen. The minimap travel is triggered when the user moves the
DH above the destination and performs a mid-air pinch gesture. The
minimap can be closed if a user puts the DH close to their abdomen
again. The manipulation of the on-body minimap relies on mid-air
input for on-body displays (P5).
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Figure 5: A user can manipulate an object using grabbing (B), translating (C), rotating (D), and scaling (E) by tapping the thumb on the index,
middle, ring, and pinky fingers. The user can further adjust the movement/rotation speed (CD Ratio) to normal, slow, and fast by tapping on
the first, second, and third segments of the finger.

(A) (B) (C) (D) (E)

Figure 6: A user can translate an object in one DOF to enable more precise control by pointing at a movement direction through NDH and
performing finger-on-arm gestures with DH (A). By combining various bimanual thumb-on-finger gestures and mid-air motions, the user can
move an object around a point (B), towards a point (C), around a line (D), and along a plane (E).

Figure 7: A user can use DH to draw lines with different colours (A) and create various shapes (B) by performing thumb-on-finger gestures
on the NDH without disrupting the main workflow in the DH. The user can also store a group of objects by putting them into the pocket and
later retrieving them from the feet (C). Moreover, the user can adjust the target destination of teleportation through finger-on-arm gestures (D)
and travel to different locations by manipulating an on-body minimap (E).

4.4 System Control
We use the menu structure to navigate between the aforementioned
functionalities or modes. The menu items are selected when the NDH
thumb is tapped on the corresponding icon located on NDH fingers
(P2). A user can quickly switch between different system functions
without disturbing the main workflow. Furthermore, the eyes-free
capability offered by on-body input may allow expert users to access
different modes without looking at the icons.

4.5 Implementation
The interaction techniques based on BodyOn were developed with an
Oculus Quest 2 headset (1832×1920 pixel resolution per eye). Hand
tracking is enabled by its inside-out cameras, and the hand keypoints
data are streamed from the OVR Plugin version 1.55.1. The software
was developed using C# in Unity (version: 2020.1.17f1).

The arm and leg postures were approximated with two bone
inverse kinematics (IK) constraints in the Animation Rigging
package (version: 0.3.4). The feet would not go through a virtual
floor, and the animated character’s body rotation was constantly
linearly interpolated to the horizontal orientation of the users’ eyes.

The current vision-based hand-tracking in the headset still has
limited tracking accuracy. They can suffer from occlusion and noise
(e.g., lighting conditions), which may lead to inaccurate results
when users’ hands move around. Therefore, we implemented the
thumb-on-finger and finger-on-arm gestures with the following
compensations in our program to make the techniques more robust.

A thumb-on-finger gesture is detected once the distance between
the thumb tip and other fingers’ bones is smaller than 0.02m for index
fingers or 0.03m for the middle, ring, and pinky fingers (as we found

the tracking to be more accurate on index fingers). We determined
the area of touch by calculating the distance from the thumb tip to the
joints (proximal interphalangeal joints, intermediate interphalangeal
joints, and distal interphalangeal joints) and the tips of each finger. We
further increased the robustness of menu selection by picking up the
closest menu icon to the thumb tip once the thumb-on-finger gestures
are observed. When the hand movement exceeds a threshold (0.002m
displacement and 0.5◦ rotation in 25 frames), the thumb tip is “locked”
onto the finger to prevent unexpected clicking during the movement.

Similarly, a finger-on-arm gesture is detected once the distance
between the index fingertip and forearm is smaller than 0.05m. The
touch location is determined by calculating the distance between the
index fingertip to the elbow and wrist.

5 EXPERT EVALUATION

Our interaction techniques represent different design possibilities
based on the six design patterns of BodyOn. Therefore, the primary
goal of our evaluation is not to fully validate the design space, but in-
stead to use the techniques as probes to elicit immediate design issues
with the novel combination of on-body and mid-air interactions.

5.1 Participants and Apparatus
Six experts, including one woman and five men, aged between 26
and 36, were recruited. All of them frequently use desktop-based
3D modelling software like Blender, Maya, AutoCAD, and Fusion
360 or game development applications such as Unity and Unreal.
Three reported using VR/AR devices 3-5 times per week, while one
reported using these devices almost every day. We hoped that domain
experts would give us more insightful feedback on the interaction



techniques and tools as they’ve already had previous experiences
dealing with similar software (like modelling tools on PC). They
were compensated $20 for participating in the study.

The study was conducted in a 3m × 4m tracking space. An Oculus
Quest 2 headset, which is a standalone VR headset, was used in the
study. The user’s view was streamed to a laptop through Wi-Fi for
observation and instruction.

5.2 Procedure
The walkthrough experience took about 60 minutes for each expert
and consisted of the following three phases.

5.2.1 Welcome and Briefing (10 minutes)
The experts first filled in a consent form and a demographics
questionnaire. We then introduced them to the purpose of the
walkthrough, the overview of the six design patterns, and the
interaction types that the techniques support (selection, manipulation,
navigation, and system control).

5.2.2 Guided and Free-Form Exploration (30 minutes)
During the walkthrough experience, the experts were guided through
all the techniques that corresponded to the six design patterns and were
asked to complete specific tasks like constructing a door on its frame
and rotating it around (detailed in the supplementary material). After
completing all the required tasks, they were asked to perform free-
from exploration while providing their thoughts on the interaction.

5.2.3 Interview (20 minutes)
After the exploration, we conducted a semi-structured interview with
the experts where we asked them to (i) illustrate the advantages and
disadvantages of the techniques over previous tools they had used in
desktop software and VR applications; (ii) give their overall impres-
sion about the usability and learnability of the interaction techniques;
(iii) describe what they liked and disliked; (iv) provide opinions
on how we should further improve the techniques; (v) any other
comments about the techniques or patterns that they had not covered.

5.3 Results
Overall, the experts (E in short) enjoyed the walkthrough experience
and were positive about the combination of on-body and mid-air
interaction. For example, E1 commented “The interactions are
really intuitive, and the concepts behind the system are amazing!”
By combining on-body and mid-air interfaces, the system certainly
brought “a lot of new functionalities” (E2, E3, and E6) as compared
to existing software.

Using both on-body and mid-air gestures as input, users found
many clever and helpful features were enabled. For example,
the manipulation techniques of changing CD Ratio and isolating
transformation enabled by single hand thumb-on-finger and mid-air
gestures (P1) were mentioned to allow “more accurate manipulation”
(E6) and could “speed up the transformation for a large room” (E1).
experts also noticed that the gestures and techniques were “easy to
learn” and they could control an object or switch between different
modes with on-body gestures without looking at their hands or arms
(eyes-free input). All experts particularly liked P4, with which
they performed mid-air gestures with one hand and finger-on-arm
gestures with the other hand to achieve operations like occluded
object selection. For example, E1 said that “sliding on arms was not
tiring.” E2 mentioned that “it enables a lot more functions and is less
fatiguing (than mid-air input alone).”

Several interesting comments pointed out potential issues with the
current implementation of combined on-body and mid-air input. One
main issue was related to how the feedback of on-body input should be
displayed. E3 noticed that it was hard to perceive the visual feedback
provided on-body while focusing on the mid-air input. While using
thumb-on-finger gestures to change CD Ratio, E3 commented that

“because the (visual) feedback is on fingertips, when I am focusing
on an object, I cannot see the feedback.” Similarly, when performing
mid-air tasks with one hand and on-body gestures with the other hand
as support (P2), E3 felt that when focusing on the mid-air input (e.g.,
painting) the current visual feedback provided on the non-dominant
hand (which might be moved outside of the user’s view) was not
enough. E3 mentioned that “I need to see the feedback (of which mode
the system is in).” These comments resonated with the experience of
some experts like E6 who encountered unintentional misclicks from
the thumb-on-finger input with the supporting hand (maybe due to sys-
tem recognition error) and got confused about the unexpected mode
switching event through the on-body input. E6, therefore, suggested
that “it would be better to sometimes detach the control panel on the
body surface and put it in mid-air or disable it (to avoid misclicks).”

In addition, the users also had various opinions on the input
regions of thumb-to-finger gestures. While E1 and E5 found no
problem performing all the gestures, others felt uncomfortable
holding the thumb on the root of other fingers. Therefore, E2 and
E3 suggested using thumb sliding and holding gestures only on the
index and middle fingers, and E3 further recommended using the
pinky finger as a display rather than as an input region.

Another interesting finding from our observation is that although
mid-air and on-body information is leveraged by the design patterns
at the same time, users may not perform the mid-air and on-body
input simultaneously. For example, while a user is performing mid-air
pointing, finger-on-arm sliding often happens after the user has
already pointed at the desired direction (e.g., for one DOF translation).

Regarding interaction techniques that allowed mid-air gestures
to interact with on-body displays, all the users liked the minimap
attached to the abdomen. They said that, for example, “taking out
a minimap from my body is cool.” (E1) and described minimap
as “my favourite feature” (E4). E6 mentioned that it provided “a
nice top-down view (of the virtual environment)”. Users also found
on-body and mid-air content transfer (P6) to be helpful and “is
the shortcut for copy and paste” (E2). However, the placement of
the on-body visualization may need to be carefully considered. E5
mentioned that the minimap was placed “too close to the body”. To
retrieve an object from the foot, E3 mentioned that “I have to bend
my body (to see the objects on my foot).”

6 DISCUSSION

This paper introduces BodyOn, a collection of six design patterns
that leverage both on-body and mid-air interfaces to achieve better
interactions in VR. The patterns were designed for (1) combining
on-body and mid-air input, especially considering the bimanual
input property (2) extending the display area of virtual contents
to body parts other than arms and hands, and (3) enabling content
transfer between on-body and mid-air space. We ground our design
concepts on a set of example interaction techniques to solve tasks
at various complexities in a 3D modelling system. We further use
these techniques as probes to elicit immediate design issues with the
novel combination of on-body and mid-air interfaces in an expert
evaluation study. In this section, we reflect on the lessons learned
from our experience, and discuss limitations and future work.

6.1 Combining On-Body and Mid-Air Interaction
By instantiating the high-level design concepts through the interaction
techniques, we confirm that BodyOn can provide versatile interaction
vocabularies to support the current VR workflow based on mid-air
interaction. On-body interfaces can provide quick controls to adjust
the control-display ratio and isolate transformation with a simple com-
bination of single-handed thumb-on-finger clicks/swipes and mid-air
movements (P1). They also offer quick access to different tools with
thumb-to-finger gestures as background support (P2). More complex
interactions can be enabled by leveraging the mid-air relationship
between two hands and combining it with thumb-on-finger input



(P3). Mid-air gestures can also be combined with 1D/2D sliding
input on the arms to achieve additional useful and effective functions
like selecting an occluded object (P4). Furthermore, using mid-air
input to interact with on-body displays (P5) and transferring contents
between mid-air and on-body space (P6) leverage the unique property
of on-body display to make the content/information accessible while
a user is moving inside virtual environments. The virtual menus
displayed on body surfaces also make the interaction discoverable.

Our expert evaluation has demonstrated a great potential of
combining on-body and mid-air interfaces. It showed that the
interactions based on BodyOn could be quickly integrated into
the mid-air interaction-based workflow and support the desired
functionalities. The expert evaluation study also points out valuable
lessons (Ls) to further improve the designs.

6.1.1 Cognitive Bandwidth of On-Body and Mid-Air Interfaces

While BodyOn leverages on-body and mid-air input information
simultaneously for interaction, users seem to have limited cognitive
bandwidth in processing the information of two interfaces at the
same time. For example, users were found to tend to perform
finger-on-arm input after the hand that performed mid-air input has
already pointed in the desired direction. Designers may need to
consider the additional cognitive load when combining these two
interfaces and allow users to perform the actions sequentially (L1).

Furthermore, when users were focusing on manipulating objects
located in the mid-air space, it was sometimes difficult for them to
notice on-body visual feedback, such as small indicators on a fingertip
or highlighted icons on a hand. The later issue may result in user
confusion with the unintentional misclicks caused by on-body input
because the input feedback is not perceived by the user. Therefore,
it is essential to present the feedback of on-body input within users’
attention regions (L2). For example, it can be beneficial to provide
a flashing icon on HUD or distinguished sound feedback when
on-body input is detected to avoid user confusion. Such solutions
aim to communicate the on-body input event that is being triggered
while may introduce an additional cognitive burden in practical use.

Additionally, because unwanted on-body events can be caused
by touching a trigger unintentionally when users are interacting with
objects in the mid-air space, we recommend providing a centralized
button/gesture to switch on-body interfaces on and off as needed (L3).
Another potential strategy is to implicitly determine users’ current
intention and determine whether an on-body click/touch should trig-
ger a new event to mitigate the effect of misclicks [57]. For example,
a designer can check the direction of gaze (on either body surfaces
or mid-air interfaces) as an indicator of whether the user intends to
perform on-body input. While these approaches may automatically
filter out a large number of unintentional clicks, they can induce false-
positive classifications (i.e., misclassifying a user’s true intention).

6.1.2 On-Body Input and Output Location

Because previous research suggests that restricting the input area of
on-body interfaces to hands and arms can be more comfortable and
socially acceptable by users [10,27,50], we chose to employ thumb-to-
finger and finger-to-arm gestures for on-body input. While all experts
liked finger-to-arm gestures, we found it would have been beneficial to
enable thumb-to-finger input region customization (L4), because users
have different preferences for the thumb-to-finger input regions. It
will be useful to consider results from previous research by constrain-
ing the touching area to the first and second segments of the index and
middle fingers to satisfy a larger population [33]. It may be further
helpful to allow users to customize their own comfort regions and
assign different functionalities on different finger segments by them-
selves (like personalizing their input control on a game controller).

Placing user interfaces on body surfaces like torso and feet can
utilize previously unused on-body space for virtual content display.
Interfaces presented on different body parts may convey different

semantic meanings of interaction (e.g., putting a virtual object close
to the heart means saving the object) and offer different viewing
perspectives (e.g., top-down view of an on-body minimap attached
close to the abdomen). Through the evaluation, we learned that the
location of on-body displays still needs to be carefully designed
(L5). Due to the weight of current head-mounted displays, placing an
object at locations that require users to heavily bend their body/neck
(e.g., close to the chest) can induce discomfort.

6.2 Applications
BodyOn encompasses high-level design concepts that integrate
on-body and mid-air interfaces. We envision the design patterns
to be generalizable to other interactive applications in addition to
3D modelling. For example, in the emerging field of immersive
analytics [17, 23], where users apply immersive technologies for
data understanding and sense-making, new interactions are required
for more challenging task scenarios like data manipulation and
transformation. In addition, designers should have more choices to
map out more complex interactions with the vocabularies enabled
by BodyOn. Moreover, BodyOn can also inspire more fruitful
interaction experiences in VR games. We also envision the design
concepts of BodyOn to be adaptable to other displays like AR if
carefully considering the affordance of the platform.

6.3 Limitations and Future Work
While the results of our study are encouraging, we have also identified
several limitations regarding our current design and evaluation for
future work. Our prototype was based on visual trackers from the
headset (to make the system self-contained), and the tracking was
not always accurate. Thus, the experts needed to adjust their postures
periodically (e.g., rotating their hands or moving the hands back to
the tracking area) to let the system recognize their postures, which
might have affected their interaction experiences. Furthermore,
the virtual character’s body posture was approximated by inverse
kinematics, and the torso and foot postures were not accurately
captured. There are some more interesting design opportunities if
the virtual character could follow the movement of users’ feet and
legs. Therefore, future work can incorporate tracking technologies
with higher precision to explore these opportunities.

We also acknowledge the importance of quantitatively evaluating
the techniques’ performance in terms of, for example, user comple-
tion time and learning time. However, we did not conduct such studies
because our designs were not implemented on a highly-accurate
motion capture system (e.g., OptiTrack). Performing quantitative
performance evaluation on our current prototype may introduce
noises from the tracking system, thus producing misleading results.
Therefore, we pursued a qualitative expert evaluation where our goal
was to help elicit immediate design issues regarding the new com-
bination of on-body and mid-air interfaces. We would like to include
a quantitative evaluation of a more accurate system in a future study.

7 CONCLUSION

We present BodyOn, a collection of six design patterns that leverage
both on-body and mid-air interfaces collaboratively for better VR
interactions. Interactive techniques based on BodyOn were devel-
oped to showcase the possible designs with the patterns. We found
that techniques based on BodyOn could provide flexible control, of-
fer quick access to different tools, and bring additional useful and
effective functions. They were easy to learn and could be quickly inte-
grated into the mid-air interaction workflow. Our study also revealed
some issues with our current implementation, such as users ignoring
on-body visual feedback when focusing on mid-air tasks. Finally, we
discussed the lessons learned from the implementation and evalua-
tion, which can inform the design of future systems that blend both
on-body and mid-air interactions. We envision BodyOn inspiring
new interactions in a multitude 3D interaction scenarios in the future.
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Chapter 7

OPTIMIZING INTELLIGENT SUGGESTION TIMING

7.1 Summary
In this work, we optimize the timing of displaying an intelligent suggestion to provide timely
support for users in an interactive task. Intelligent suggestion techniques leverage probability
estimates from a target prediction model to provide users with an easy-to-use method (e.g.,
a button click) to interact with the most probable target in an interaction scenario. Such
techniques alleviate the need to manually point at targets or conduct a full visual search of an
environment. Through a series of three experiments, we showed that our framework was both
theoretically and empirically effective for providing intelligent suggestions at optimal timing.
Our experiments demonstrated that the solution suited small and distant target acquisition.
The solution was effective in preventing errors in a dense target selection task and efficient in
offering suggestions that could shorten the task completion time. It could mitigate the need
for precise pointing and could improve user experience. The framework can be adapted to
various interaction scenarios (e.g., a cluttered environment or a mentally-demanding task).

Env. Task
Small Distant Occluded Effectiveness Efficiency Ergonomics Experience Expressivity
✓ ✓ ✓ ✓ ✓ ✓ ✓

7.2 Article IV
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Annual ACM Symposium on User Interface Software and Technology, pp. 1-20. 2022. https:
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Figure 1: An overview of the intelligent suggestion timing problem. While a user is attempting to select an icon in virtual
reality, a target prediction model could be continuously estimating the likelihood that the user will select each icon (e.g., at
timestamp 𝑡𝑥 and 𝑡𝑦). Depending on the results of these estimations, a system could then display an intelligent suggestion to
the user that highlights the most probable icon for them to select. This suggestion, for example, could enable them to select
an icon using a simple click, so that the user does not need to manually point towards the icon. While such suggestions could
improve the usability of intelligent user interfaces, it is currently unknown whether early suggestions, which could save the
user time and effort but may be less accurate, or later suggestions, which could save less time and effort but may be more
accurate, are more beneficial for users.

ABSTRACT
Intelligent suggestion techniques can enable low-friction selection-
based input within virtual or augmented reality (VR/AR) systems.
Such techniques leverage probability estimates from a target pre-
diction model to provide users with an easy-to-use method to select
the most probable target in an environment. For example, a system
could highlight the predicted target and enable a user to select it
with a simple click. However, as the probability estimates can be
made at any time, it is unclearwhen an intelligent suggestion should
be presented. Earlier suggestions could save a user time and effort
but be less accurate. Later suggestions, on the other hand, could
be more accurate but save less time and effort. This paper thus
proposes a computational framework that can be used to determine
the optimal timing of intelligent suggestions based on user-centric
costs and benefits. A series of studies demonstrated the value of the
framework for minimizing task completion time and maximizing
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suggestion usage and showed that it was both theoretically and em-
pirically effective at determining the optimal timing for intelligent
suggestions.
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1 INTRODUCTION
Target selection in virtual and augmented reality (VR/AR) systems
is difficult, especially when interaction scenarios are complex (e.g.,
with small, faraway, cluttered objects) and input techniques are
cumbersome to use (e.g., mid-air hand pointing). Recent research
has utilized statistical or machine learning models to estimate the
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likelihood of a user selecting different items or objects of inter-
est [20, 25, 65]. Based on the estimated probabilities computed by
these models, an interaction system may then use visual highlight-
ing or display a notification to draw the user’s attention towards the
most probable target. Next, a user may select the predicted target
with a shortcut (such as a simple click) [1, 30, 70]. Such techniques
can alleviate the need to manually point at targets or conduct a
full visual search of an environment, potentially leading to quicker,
easier, and more comfortable interactions. They can also be use-
ful within VR/AR systems that employ noisy, high-friction input
modalities [1, 22, 70] or support scenarios that require users to
complete manually-intensive or mental-demanding tasks, such as
selecting objects in a cluttered environment or navigating through
a complex hierarchical menu [17, 25, 38, 71].

While current target prediction models can determine which
target a user may select, they cannot determine when intelligent
suggestions should be provided to users.While an earlier suggestion
could save a user time and effort, such suggestions have a higher
chance of being incorrect, which could cause users frustration,
break their trust, or decrease their performance [12, 40]. On the
other hand, later suggestions are likely to be more accurate but less
beneficial because users have already spent ample time and effort to
complete their task. By the time a model has accumulated enough
evidence to be certain of a user’s intended target, the user may have
almost completed their action, thus rendering the late-breaking
intelligent suggestion useless or disruptive (refer to Figure 1 for a
problem overview).

Despite this important nuance, existing target prediction models
have not scrutinized when to offer a suggestion and instead used
a heuristically proposed probability threshold. For example, prior
work on forecasting which target a user might reach towards with
their hands used a threshold of 85% because the model seemed ac-
curate enough at that point based on their evaluation of the model
confidence value over time [20]. In contrast, Huang et al. used a
threshold of 43% when predicting which sandwich ingredient a user
might choose via gazing [36]. They used this threshold because it
was based on the average model confidence value for a correct pre-
diction. The mixture of design intuitions and model performance
observations used in this prior work may not lead to optimal sug-
gestion timings—one may wonder if a better threshold could be
chosen. Furthermore, this prior research did not consider the user-
centric costs and benefits of intelligent suggestions (e.g., the exact
time saved by a suggestion). Thus, this research introduces the
COBO (cost-benefit optimization) framework, which determines
the optimal timing of intelligent suggestions by considering user-
centric costs and benefits. Specifically, COBO uses the probability
estimates computed by a target prediction model over time as input
and quantifies the cost and benefit of a suggestion to produce a final
gain function. The obtained gain function then enables the determi-
nation of the most beneficial timing for suggestions either through
optimization of this function or through designer’s intuition.

To study how users would respond to an intelligent suggestion
displayed at different timings, a dense target selection task and a
text matching task were implemented in VR. VR was chosen as the
testbed because VR input techniques such as mid-air pointing are
effortful and are likely to benefit from intelligent suggestions. Based
on the study results, cost and benefit functions were developed and

simulations were run under two optimization strategies – Optimal
Thresholding and Reinforcement Learning – to minimize user task
completion time and maximize intelligent suggestion usage. The
efficacy of these strategies was then verified in two validation ex-
periments, which showed that COBO was helpful for determining
the optimal timing of intelligent suggestions both theoretically and
empirically.

The primary contributions of this research are:

• A framework (i.e., COBO) to optimize the timing of intel-
ligent suggestions through a computational approach that
considers user-centric costs and benefits.

• Study outcomes that demonstrate the effectiveness of COBO
for intelligent suggestion timing optimization on two objec-
tives: minimizing user task completion time and maximizing
intelligent suggestion usage.

2 BACKGROUND AND RELATEDWORK
This research was informed by facilitation techniques that aim to
improve user performance and save user efforts in object selection
tasks. It also took inspiration from works that applied probabilis-
tic models to estimate user-intended target(s) and research that
leveraged Reinforcement Learning for objective optimization in
interactive applications.

2.1 Selection Facilitation Techniques
Selection facilitation techniques have been used as a method to
improve interaction since the introduction of early graphical user
interfaces. While numerous techniques have been proposed, the
majority decrease the movement distance required to reach a target
and/or increase the effective size of the target [28]. To shorten the
movement distance, techniques may snap the cursor to the target
(e.g., [10, 73]). To increase the target size, techniquesmay expand the
target [44] or resize the cursor [28, 46]. A visual indicator (e.g., visual
highlighting) may also provide feedback when a technique has
selected a candidate object. The user can then use an explicit action
(e.g., a button press) to confirm that the object that is currently
selected is the one they desired to select.

Selection facilitation techniques have also been explored in
VR/AR scenarios (see surveys such as [6, 42]). For example, Schjer-
lund et al. applied multiple virtual hands to shorten the selection
distance [60] and Baloup et al. compared various raycasting-based
methods that enlarged the objects’ effective size in VR [11]. Selec-
tion facilitation techniques have been applied to VR/AR systems be-
cause mid-air pointing, which is a commonly used input modality in
these systems for 3D input, can be inefficient and imprecise [7, 70].

More relevant to the present research are selection techniques
that predict user-intended targets [1, 70]. In addition to decreas-
ing target distances and increasing target sizes, prediction-based
methods have also been found to reduce search time [15]. While a
user may have trouble finding the intended target in more complex
environments (e.g., those with lots of visual clutter), an intelligent
suggestion can present a potential target to users, thus minimizing
the time spent searching and manually pointing. We describe these
techniques in the next section.
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2.2 Target Prediction
Users’ intended selection targets can be sensed through behavioral
cues, such as body and eye movements. Much existing research
focuses on building models that appropriate gaze traces or scan-
paths to predict selection intentions [21, 37, 39, 59, 61, 72]. For
example, Borji et al. [15] built models that predicted search targets
based on gaze fixations on a large random-dot array. Their model-
ing rationale was that attention and gaze are guided toward visual
features that are similar to a search target. Using this approach,
they demonstrated that their models outperformed a random base-
line, especially when a larger number of fixations was considered.
Huang et al. [36] used a support vector machine model to pre-
dict a customer’s intended target in a sandwich-making scenario
and made correct estimations approximately 1.8 seconds before a
customer’s spoken request. Sattar et al. [58] proposed a model to
predict the categories and attributes of user intended objects from
gaze data, which were then used to reconstruct plausible targets.
Researchers have also explored target forecasting in VR (e.g., [35]),
with some taking advantage of gaze fixations to anticipate users’
hand movements while reaching for objects [19, 26].

Hand and input device trajectories have also been used in selec-
tion tasks to infer user-intended targets [13, 14, 47, 74]. For exam-
ple, Ahmad et al. [1–4] investigated probabilistic intent prediction
approaches for in-vehicle touchscreen input based on pointing ges-
tures. Yu et al. [70] examined the selection distribution of VR input
controllers and used this information to predict the likelihood of a
user selecting a candidate object. Clarence et al. [20] used long short-
term memory (LSTM) models to predict the probability of selecting
candidate objects using hand-reach features such as position and
orientation. Researchers have also predicted future cursor positions
in target-agnostic manners (e.g., [10, 30–32, 41, 43, 51, 68]).

In addition to user behaviour, models can also make use of users’
preceding actions or contextual information to infer their next se-
lection intent [27, 66, 67]. For instance, Goodman et al. [27] applied
a language model for text entry to estimate the most likely selected
key based on an entered sequence and the current input distribution.
White et al. [67] leveraged interaction contexts such as previous
search queries and clicks to predict users’ short-term interests.

Although target prediction models can be effective at determin-
ing which object a user intends to select previous work has not
examined when intelligent suggestion should be enabled to maxi-
mize its benefits. Some researchers have used design intuitions to
trade-off between successful early predictions and the possibility
of introducing false positives [1, 20, 36]. Others chose to always
display a predicted target (e.g., typing predictions). However, in-
tuitions may not lead to optimized performance and always-on,
constantly changing suggestions during cursor navigation or visual
search might lead to user costs that were not anticipated, especially
in VR/AR scenarios where screen space is limited and distraction
may be costlier. As such, our research introduces a method for
optimizing the timing of intelligent suggestions that was designed
to be extensible to any of these aforementioned prediction models.

2.3 Reinforcement Learning
Recently, reinforcement learning (RL) has been used in the devel-
opment of adaptive user interfaces [25, 62] and human behavior

simulations [18, 33]. In a typical training setting, an RL agent in-
teracts with its environment using a set of actions and receives
corresponding feedback (i.e., rewards or penalties) to help it learn
from the environment [8]. Through this trial-and-error process,
the agent can discover an action policy that leads to a maximized
reward. Such a learning paradigm may be particularly suitable for
interactive settings that incorporate human-in-the-loop [9].

HCI researchers have applied both model-based and model-free
RL for interface optimization. For example, Todi et al. [62] leveraged
model-based RL that utilized predictive HCI models to estimate
a potential reward of an agent’s action. Their model-based agent
learned to adapt menu interfaces through order changing or group-
ing to improve user performance. In contrast, Gebhardt et al. [25]
applied model-free RL to support users in a visual search task by
showing and hiding object labels (e.g., price tags). Their RL agent
observed user behavior (i.e., gaze trajectories) and received rewards
or penalties depending on whether a label was shown when the
user’s gaze point was fixated on the object. Compared to model-
based approaches, the model-free agent did not make predictions
about the next state and reward before it took an action.

The present work employs model-free RL to discover an optimal
policy of suggestion timing. Model-free RL was chosen because it
does not require a transition dynamics model to derive a useful pol-
icy. The reward function integrated user-centric costs and benefits
in terms of, for example, the exact time saved in seconds.

3 RESEARCH OVERVIEW
Our framework relies on quantifying user-centric costs and benefits
of a suggestion over time (e.g, the exact time saved by a suggestion)
to produce a final gain function for optimal suggestion timing de-
termination. In the following sections, we introduce our framework
and present three studies that aimed to demonstrate and validate
the proposed framework.

The first is a user study to collect data to approximate the cost and
benefit functions related to two optimization objectives (i.e., time
saved and suggestion usage percentage) in a manually-intensive
task and a mentally-demanding task. This is essential to complete
the cost and benefit quantification step in the framework.

The second is a simulation study where simulations were run
with two optimization strategies (Optimal Thresholding and Rein-
forcement Learning) for single- and multi-objective optimization.
These simulations aimed to optimize the gain functions related to
the objectives and theoretically evaluate the optimization strategies.

In the third study, the optimization findings were empirically
validated by running user studies that compared the optimal timing
of intelligent suggestions produced by our framework against two
baselines—heuristic-based thresholding and no suggestion. The
baselines help contextualize the impact of our solution relative to a
literature baseline and interfaces that offer no suggestions.

4 COBO FRAMEWORK
COBO (cost-benefit optimization) is a framework to optimize when
to display intelligent suggestions by considering the costs and ben-
efits that an intelligent suggestion may provide to the user (e.g.,
the exact time saved) given specific timing and model probabilities.
More precisely, COBO takes input probability estimations from a
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target prediction model and user-centric costs and benefits of a
suggestion over time to form a final gain function. The optimized
suggestion timing is then determined by finding the maximum gain
on this gain function curve (Figure 2). To apply the COBO frame-
work, three components are needed: a target prediction model, a
method for cost and benefit quantification, and a strategy for gain
function optimization.

4.1 Target Prediction Model
Target prediction models are probabilistic models that infer a user’s
intended target of interest. A model typically produces a probability
distribution {𝑝𝑘𝑡 } among 𝑁 potential candidates, which indicates
the likelihood of a user selecting each candidate 𝑘 ∈ K = {1, ..., 𝑁 }
at timestamp 𝑡 (Figure 2 left). It may then output the most likely
target and its corresponding probability value 𝑞𝑡 (also called the
model confidence). In themodel, timestamp 𝑡 ∈ {1, ...,𝑇 }, where𝑇 is
the total number of timestamps that themodel produces estimations
since the onset of the selection until the user manually selects a
target. In the present work, the target prediction models produce
output at a constant frequency 𝑓 . Therefore, timestamp 𝑡 can be
converted to time in seconds 𝑡𝑠 using 𝑡𝑠 = 𝑡/𝑓 .

The target prediction models can be trained using data col-
lected from various information channels (e.g., user hand move-
ment [1, 20], eye gaze information [21, 36], prior selection infor-
mation [27], etc.). While the output of the target prediction model
(i.e., probability estimates over time) is used as input to the COBO
framework, the model itself is not a part of the framework. For sim-
plicity, this research only displays intelligent suggestions for the
most probable object. Thus, only the model confidence 𝑞𝑡 is used
as input to the COBO framework rather than the whole probability
distribution. It is also assumed that model confidence is a reasonable
approximation of the ground truth prediction accuracy [29, 49].

4.2 Cost and Benefit Quantification
COBO requires a quantification of the user-centric costs and ben-
efits of displaying an intelligent suggestion over time based on
the optimization objective. For example, if the objective is to mini-
mize user task completion time, the cost and benefit quantification
can use an estimation on how long it takes users to respond to
suggestions, how much time a correct suggestion may save, and
how much of a time delay an incorrect suggestion may cause. Such
quantification can be specified from the results of empirical user
studies or through literature-informed assumptions. The obtained
cost function Cost(𝑡) and benefit function Benefit(𝑡) can then be
used to build a final gain function.

The total gain of displaying an intelligent suggestion for the most
probable object at a particular timestamp 𝑡 is shown in Equation 1.
The gain function is equivalent to the benefit obtained, multiplied
by the probability that the predicted object is the true target minus
the cost, multiplied by the probability of the object not being the
real target.

Gain(𝑡) = Benefit(𝑡) · 𝑞𝑡 − Cost(𝑡) · (1 − 𝑞𝑡 ) (1)

When applying the COBO framework, the gain objective can
vary in different applications according to a designer’s needs (e.g.,

minimizing completion time, minimizing induced errors, maximiz-
ing user satisfaction, etc.). This research demonstrates the optimiza-
tion of two gain objectives, i.e., the time saved by users and the
suggestion usage percentage.

4.2.1 Time Saved by Users. Task completion time is an obvious
metric of user task performance. Ideally, an effective user inter-
face shortens task completion time, while maintaining accuracy
to increase user efficiency. To maximize time savings for users,
the following three variables were considered when displaying an
intelligent suggestion at timestamp 𝑡 :

• Response time RT(𝑡): the time elapsed between the first ap-
pearance of a correct suggestion and the time when the user
applies the suggestion (e.g., through a simple click).

• Response rate RR(𝑡): the overall user response rate to a cor-
rect suggestion.

• Delayed time DT(𝑡): the average time delay caused by dis-
playing an incorrect suggestion.

For simplicity, we assume that there are minimal effects of i) the
delayed time of a correct suggestion if a user does not apply it and
ii) the response time of an incorrect suggestion if a user assumes it
is correct.

For a given trial with total timestamps 𝑇 , the potential benefit
of displaying a suggestion at 𝑡 is represented in Equation 2. The
equation can be interpreted as the estimated timestamps saved if a
correct suggestion is given at 𝑡 , multiplied by their rate of response.
The max function ensures the benefit value is no smaller than 0.

Benefit(𝑡) = max(0,𝑇 − (𝑡 + RT(𝑡))) · RR(𝑡) (2)
The potential cost is the time delay caused by an incorrect pre-

diction (Equation 3).
Cost(𝑡) = DT(𝑡) (3)

Inserting Equation 2 and 3 into Equation 1, results in an esti-
mated gain function that considers the timestamps saved for users
(Equation 4). It can be converted to the time saved in seconds by
dividing it by the model output frequency 𝑓 .
Gain(𝑡) = max(0,𝑇 − (𝑡 + RT(𝑡))) · RR(𝑡) · 𝑞𝑡 − DT(𝑡) · (1 −𝑞𝑡 ) (4)

4.2.2 Suggestion Usage Percentage. Although time savings is a use-
ful objective for performance improvement, it may not necessarily
be valuable to the user experience. For example, previous work
has shown that even when word prediction may impair average
text entry speeds on mobile devices, users still prefer to use them
[50, 54]. As such, we also sought to optimize for intelligent sugges-
tion usage percentage. It was assumed that as long as a user applies
an intelligent suggestion, it leads to a preferred user experience.

Based on this, the gain function can be written as Equation 5.
The benefit function is approximated by the likelihood of users
responding to a correct suggestion. For simplicity, the probability
of users applying an incorrect suggestion is ignored so the cost
function is omitted.

Gain(𝑡) = RR(𝑡) · 𝑞𝑡 (5)

4.3 Gain Optimization
The value of the gain function Gain(t) changes over time such that
the model confidence value 𝑞𝑡 , the user-centric cost Cost(t), and
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Figure 2: An overview of the COBO framework. COBO uses the probability estimates of a target predictionmodel as input and
quantifies the cost and benefit of the suggestion over time to produce a final gain function. The gain function is computed
using the benefit of displaying a suggestion minus its cost across the time axis. By applying an optimization strategy, the
framework determines when displaying a suggestion will be useful (gain > 0) and when the gain value (𝑚𝑎𝑥 (gain)) will be
maximized.

benefit Benefit(t) will be different as the task progresses and 𝑡
increases. In real applications, the target selection model does not
infer when a user starts the task (𝑡 = 0) or when the user finishes the
task, so the task progress is unknown to the prediction model. One
solution is thus to infer 𝑡 from the the real-time model confidence
value of the target prediction model 𝑞𝑡 because the model tends to
become more confident in its predictions as the user reaches the
end of their task. Several prior studies have indicated that the rela-
tionship between 𝑡 and 𝑞𝑡 may follow a sigmoid function [20, 36],
thus the implicit relationship between 𝑡 and 𝑞𝑡 can be modelled as
𝑡 = 𝑔(𝑞𝑡 ). By doing this, the final objective function (Equation 6)
only depends on the real-time confidence output 𝑞𝑡 . The objective
function returns the 𝑞𝑡 that leads to the maximum gain. The re-
turned 𝑞𝑡 can be directly applied to determine a suggestion timing.
For example, if the optimized 𝑞𝑡 = 0.6, the system should display
an intelligent suggestion when the model confidence reaches 0.6.

argmax
𝑞𝑡 ∈[0,1]

[Benefit(𝑔(𝑞𝑡 )) · 𝑞𝑡 − Cost(𝑔(𝑞𝑡 )) · (1 − 𝑞𝑡 )] (6)

In practice, we obtain the mapping function 𝑡 = 𝑔(𝑞𝑡 ) from a
training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 . The purpose of 𝐷𝑡𝑟𝑎𝑖𝑛 is to provide known
relationship between 𝑡 and 𝑞𝑡 so that an optimization strategy can
learn how to handle new real-time 𝑞𝑡 values. In this work, we cre-
ated a dataset, 𝐷𝑡𝑟𝑎𝑖𝑛 , wherein each data trial consisted of known
𝑞𝑡 values for all 𝑡 ∈ {1, ...,𝑇 }. Such a dataset can also be gener-
ated by using a trained prediction model to produce 𝑞𝑡 for each
𝑡 ∈ {1, ...,𝑇 } of the feature data (e.g., hand movement [20] or gaze
information [36] over time). Once 𝐷𝑡𝑟𝑎𝑖𝑛 and the cost and bene-
fit functions are available, an optimization strategy can calculate
the expected gain by simulating the effect of enabling intelligent
suggestions at different 𝑞𝑡 (which correspond to a known 𝑡 ) on the
trials in 𝐷𝑡𝑟𝑎𝑖𝑛 , to consequently compute an optimal solution over
the training set. With the hypothesis that the training data is a
reasonable approximation of the unseen testing data, the optimized
solution can be generalized to real applications.

Since the objective is to find a 𝑞𝑡 or a set of 𝑞𝑡 s that can lead to
the maximum gain, various optimization methods can be applied

to solve this problem. In this work, two optimization strategies (i.e.,
Optimal Thresholding and Reinforcement Learning) were explored.

4.3.1 Optimal Thresholding (OT). The Optimal Thresholding strat-
egy aimed to obtain a single optimized model confidence threshold
that worked best on 𝐷𝑡𝑟𝑎𝑖𝑛 . To achieve this aim, different confi-
dence values 𝑞𝑡 ∈ [0, 1] were tested and the 𝑞𝑡 that lead to the
highest expected gain on 𝐷𝑡𝑟𝑎𝑖𝑛 was selected.

4.3.2 Reinforcement Learning (RL). Rather than relying on a single
threshold for all trials, RL-based optimization strategies can pro-
vide “dynamic thresholds” based on the profile of each trial (e.g.,
the speed of increase of the model confidence value). This has the
potential to further boost the optimization performance compared
to Optimal Thresholding. Therefore, RL was applied to derive opti-
mal policies for intelligent suggestions that could reach the highest
gain on 𝐷𝑡𝑟𝑎𝑖𝑛 . Specifically, our RL agents observed the incoming
probability estimations and explored different action sequences
(i.e., displayed an intelligent suggestion or not) to ultimately find
optimal action sequences that would lead to the maximum gain.
Additional details about the RL agents are in Section 6.3.

5 STUDY 1 - DATA COLLECTION
The primary goal of the first study was to quantify the cost and
benefit of the two optimization objectives. To this end, data was
collected from participants while they responded to an intelligent
suggestion displayed at different timings. Specifically, this study
focused on how much time it took participants to respond to a
correct suggestion, the usage percentage of the correct suggestion
over time, and the trial completion delay incurred by an incor-
rect suggestion. Two different task scenarios (manually-intensive
vs. mentally-demanding) and two different suggestion types (vi-
sual highlighting versus pop-up notification) were used to explore
whether these factors would lead to different participant responses.
We tested these factors because they could be the main determi-
nants of user behavior towards an intelligent suggestion.
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Figure 3: Screenshots of the dense target selection task (left)
and the text matching task (right).

We used a two-session data collection study methodology. In the
first session, baseline user performance (e.g., task completion time)
was collected while participants performed a dense target selection
task and a text matching task. The baseline user performance was
used to inform the suggestion timing interval for the second session.
In the second session, correct and incorrect suggestions within
the earlier determined timing intervals were displayed and the
resulting participant behavioral data were recorded. This enabled
the measurement of the costs and benefits of the suggestion.

We here prioritize high-level concepts and more relevant con-
tents in our presentation. We refer readers to Appendix A for more
detailed descriptions of the task scenarios and suggestion methods
and the significance testing results.

5.1 Participants and Apparatus
Sixteen participants (6 women and 10 men) were recruited and
provided informed consent on attending the study. Participant ages
ranged from 23 to 47 (𝑚𝑒𝑎𝑛 = 36.6, 𝑠𝑡𝑑 = 7.7, one participant did
not report their age). All participants had normal or corrected-to-
normal vision and all were right-handed. Twelve participants had
used VR devices for 0-5 hours per week, three used them for 5-10
hours, and one had never used a VR device before. As participation
was remote, participants received equipment to use in the study by
mail (i.e., an Oculus Quest 2, two Touch controllers, and a laptop
with an GTX 1070 graphics card) and met with the researchers
during a video call to complete the study.

5.2 Task Scenarios
Two task scenarios, representative of common interaction tasks that
are effortful to perform, were employed (see Figure 3). The dense
target selection task represented a manually-intensive task, where
participants needed to select a small object located at the center
of a cluster [46, 64]. The text matching task served as a mentally-
demanding task, where participants needed to find and select an
object with text that matched a target text. This task simulated
real-world, search-heavy scenarios like searching for ingredients
from a receipt, finding street names on a map, or browsing through
a menu [52].

5.3 Suggestion Method
Two suggestion methods were used in the study—a highlighting
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fluorescent outline was displayed around the
suggested object (Figure 4 left). The highlighting suggestion was
in-situ, so it remained at the object location without following the
direction participants were looking. With the pop-up notification

Figure 4: Highlighting notification (left) and pop-up sugges-
tion (right) used in the dense target selection task.

suggestion, a suggestion window appeared at the bottom of the
participant’s current viewing direction (Figure 4 right) [57]. When
participants rotated their viewing direction, the pop-up notification
followed the viewing direction. For both suggestions, participants
could quickly access the suggested object via the Button A or dis-
card the suggestion by tilting the joystick to the right.

5.4 Study Design
The study included two sessions. The first session used a within-
subject design with one factor, Task Type (dense target selection
and text matching), to collect baseline user performance. Each task
had 48 trials, with the first 3 trials being discarded as practice trials.
The order of Task Type was counterbalanced. In total, 1440 trials
were recorded (= 16 participants × 2 task types × 45 repetitions).

The second session was conducted on a later day with the same
pool of participants after they had all finished the first session. It
also used a within-subject design but had three factors: Task Type
(dense target selection and text matching), Suggestion Method
(highlighting and pop-up notification), and Suggestion Mode (cor-
rect, incorrect, and no suggestion). A suggestion, if there was one,
was generated within a specific timing interval ([0𝑠, 3.1𝑠] for the
dense target selection task and [0𝑠, 7.6𝑠] for the text matching task).
The suggestion timing was then randomly sampled within this in-
terval in each task to help us better understand how users respond
to suggestions over time. The mean task completion time from the
first session was used as the maximum suggestion timing for the
second session, as users normally finish the task manually before
these upper-bound times. The order of Task Type and Sugges-
tion Method were counterbalanced, and the order of Suggestion
Mode was randomized within each block. When a participant was
working on a certain task type with a suggestion method, a sugges-
tion may or may not appear and could be correct or incorrect. In
Session 2, each condition was repeated 32 times (2 practice trials).
In total, 5760 trials were recorded (= 16 participants × 2 task types
× 2 suggestion methods × 3 suggestion modes × 30 repetitions).

5.5 Study Procedure
The same procedure was used for both sessions of the study. Each
session started by introducing the two experimental tasks and sug-
gestion methods (only for session 2). In session 1, participants then
practiced the two tasks. In session 2, they practiced the scenarios
with and without the two suggestion types in each task. The sug-
gestion timing was shortened to 1/3 of the original intervals during
practice to ensure they saw a suggestion. They then started the
experiment where they were asked to complete each task as fast and
as accurately as possible, and were encouraged to use intelligent
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suggestions if they were correct. They were given breaks between
blocks. After session 2, they completed a post-study questionnaire.

5.6 Results - Session 1
Before the baseline task completion time was computed, the data
was pre-processed to remove outliers that deviated more than three
standard deviations from the mean (𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑). This lead to 9
trials (1.25%) being discarded for the dense target selection task and
19 trials (2.64%) being discarded for the text matching task. A total
of 711 trails and 701 trials were left for analysis, respectively.

The completion times for both tasks followed log-normal distri-
butions. Using the maximum-likelihood estimation, the calculated
distribution parameters were 𝜇 = 1.13, 𝜎 = 0.25 for the dense tar-
get selection task and 𝜇 = 1.88, 𝜎 = 0.60 for the text matching
task. Participants took an average of 3.21 seconds (𝑠𝑡𝑑 = 0.86) to
complete the dense target selection task and an average of 7.77
seconds (𝑠𝑡𝑑 = 4.6) to complete the text matching task. The overall
accuracies were 94.09% and 100%, respectively.

5.7 Results - Session 2
Pre-processing the session 2 data involved first discarding trials
where participants completed the task before an intelligent sug-
gestion was displayed (i.e., 222 (7.71%) dense target selection trials
and 447 (15.52%) text matching tasks). Additionally, trials outside
𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑 , were also removed (i.e., 30 (1.04%) dense target selec-
tion trials and 40 (1.39%) text matching trials). This left 2628 trials
and 2393 trials, respectively, for each task for analysis. The overall
accuracy for the dense target selection task was 95.09% and 99.28%
for the text matching task.

5.7.1 Response Time. Response time was defined the time elapsed
between the appearance of a correct intelligent suggestion and
a participant’s selection of that suggestion. We used multivari-
ate adaptive regression splines (MARS) to model the relationships
between suggestion timing and response time. MARS was used be-
cause it tries to find multiple linear regression lines to fit data while
balancing goodness-of-fit and simplicity. The linear regression lines
were connected through hinge functions (ℎ(𝑥 − 𝑐) =𝑚𝑎𝑥 (0, 𝑥 − 𝑐)
or ℎ(𝑐 − 𝑥) = 𝑚𝑎𝑥 (0, 𝑐 − 𝑥) where 𝑐 was a constant called knot)
to provide non-linear approximations of the data. The maximum
number of terms was set to two for the robustness of the model. The
resulting equations for the four conditions are summarized in Table
1. Figure 5A shows graphic illustrations of the relationship between
suggestion timing and response time of two example conditions .

5.7.2 Response Rate. Response rate was defined as the likelihood
that participants accepted a correct suggestion.We appliedMARS to
model the relationship between the response rates and suggestion
timings directly. Specifically, suggestion timing was used as a pre-
dictor and the accuracy of the suggestion was as the target variable
(0: incorrect, 1: correct). The regression results then approximated
the percentage of participants accepting a correct suggestion over
time (Figure 5B). Table 1 summarizes the corresponding MARS
models.

5.7.3 Delayed Time. Delayed time was the time delay that was
incurred due to incorrect suggestions. For a given trial, it was in-
feasible to record the task completion time both with and without

Figure 5: Examples of the modeling results for response
time, response rate, and delayed time. The dots represent the
data trials, the black lines are the model fitting results pro-
vided by MARS, and the ribbons indicate 95% CI.

a suggestion (even if we repeated the trial, factors such as learning
and familiarity would differ). Therefore, this metric was computed
using the task completion time of each trial with an incorrect sug-
gestion minus the average task completion time in the correspond-
ing condition with no suggestion. The calculated distribution then
allowed us to determine the average delay an incorrect suggestion
would cause across different suggestion timings (Figure 5C). The
delayed time data was fit into the MARS model for each condition.
The results are summarized in Table 1.

5.8 Summary
Based on the data collection results, MARS models were able to sim-
ulate how participants would respond to an intelligent suggestion
at different timings (Table 1). The models resulted in reasonable
approximations of cost functions Cost(t) and benefit functions
Benefit(t) for the two objectives. The gain of displaying an intelli-
gent suggestion at timestamp 𝑡 can thus be calculated via Equation
4 and 5. From the study results, it was also determined that the
gain functions for the four conditions (Task Type × Suggestion
Method) were quite different. Therefore, the four conditions were
handled differently in later evaluations.

6 STUDY 2 - SIMULATION
The primary goal of the second study was to conduct a theoretical
evaluation of the two suggestion timing optimization strategies -
Optimal Thresholding (OT) and Reinforcement Learning (RL). To
achieve this, a mock target prediction model that generated various
data trials (𝐷𝑡𝑟𝑎𝑖𝑛) during the two task scenarios was built. Simula-
tions were run to estimate the gain of the optimization strategies.
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Table 1: Summarization of the modeling results from MARS (multivariate adaptive regression splines).

Task Type Suggestion Method Response Time Response Rate Delayed Time

Dense Target Selection Highlighting 0.90 + 0.83 · ℎ(1.19 − 𝑥) 0.97 − 0.24 · ℎ(𝑥 − 1.02) 0.01 + 1.08 · ℎ(𝑥 − 1.96)
Dense Target Selection Pop-up Notification 1.13 + 0.13 · ℎ(𝑥 − 1.60) 1.00 − 0.24 · ℎ(𝑥 − 0.98) 0.57 + 2.25 · ℎ(𝑥 − 2.52)
Text Matching Highlighting 2.91 0.90 0.66 + 0.84 · ℎ(𝑥 − 1.29)
Text Matching Pop-up Notification 1.47 0.96 − 0.03 · ℎ(𝑥 − 3.90) 4.94 − 0.61 · ℎ(7.13 − 𝑥)

To constrain the search space, the study focused on applying high-
lighting suggestions for the dense target selection task, as it was
less intrusive, and using pop-up notifications for the text matching
task, as it led to quicker responses.

The following subsections first present the mock target predic-
tion model that was used to generate 𝐷𝑡𝑟𝑎𝑖𝑛 and then introduce the
four simulation experiments that were undertaken. In Simulation
1, the performance of OT was bench-marked for the time saved for
participants versus the suggestion usage percentage. The perfor-
mance of the baselines that leveraged the design heuristics were
also used to determine thresholds. In Simulation 2, RL was applied
for optimization. In Simulation 3, multi-objective optimization (i.e.,
time saved and usage percentage) was run with OT.

6.1 Target Prediction Model Mock-up
As most models’ prediction accuracy values seem to follow sigmoid
curves over task progression (e.g., [2, 15, 20, 36]), we simulated a
similar model by mimicking the observed sigmoidal relation be-
tween accuracy and time to generate 𝐷𝑡𝑟𝑎𝑖𝑛 . Specifically, for each
trial, we first sampled trial length 𝑇 based from the log-normal dis-
tribution found in the first session of Study 1 (Figure 6A). Then, a
sigmoid function of task progression regarding prediction accuracy
was computed (Figure 6B-C) and deviations (i.e., spikes and dips)
were added to the sigmoid function (Figure 6D). More details of this
mock-up target prediction model can be found in Appendix B.1.

The mock-up target prediction model was limited in that it only
mimicked the appearance of the confidence curves, so it did not
capture the inherent decision information of a real target predic-
tion model. However, if the optimization strategies worked with
a pseudorandom model, then they may also work with an actual
target prediction model. Next, we present simulation results based
on 30,000 trials generated by the mock-up prediction model for
each task scenario. The trials were separated such that 90% were
used for training and 10% were used for testing. Among the training
data, 10% was used for hold-out validation. We present only testing
results in the paper while readers can find the validation results in
Appendix B.2.

6.2 Simulation 1: Optimal Thresholding
The Optimal Thresholding (OT) strategy sought to learn an opti-
mized confidence threshold from the dataset that would lead to the
best gain. To achieve this, different confidence values were tested
(𝑞𝑡 ∈ [0, 1], 0.01 per step) and the corresponding gain was calcu-
lated using Equation 4 and 5 from the first study. Figure 7 presents
two examples of how the gain in the time saved condition changed
as the confidence threshold 𝑞𝑡 varied. The optimized threshold was

Table 2: Testing results when using Optimal Thresholding
(OT) and Heuristic Thresholding (HT) regarding the dense
target selection (DTS) task and the text matching (TM) task.

Task Strategy (Th.) Time Saved/Usage% % Improved

Ti
m
e
sa
ve
d DTS OT (0.47) 0.4073s (0.3202s) 39.39%

DTS HT (0.85) 0.2922s (0.3645s) -
TM OT (0.98) 1.6211s (1.7946s) 260.89%
TM HT (0.50) 0.4492s (1.1440s) -

Us
ag
e
% DTS OT (0.81) 65.69% (18.30%) 0.36%

DTS HT (0.85) 65.45% (20.42%) -
TM OT (0.96) 87.17% (18.53%) 51.52%
TM HT (0.50) 57.53% (15.63%) -

quite different for the dense target selection task (𝑡ℎ𝑟𝑒𝑠 = 0.47)
compared to the text matching task (𝑡ℎ𝑟𝑒𝑠 = 0.98).

To benchmark the performance of OT, we picked a threshold
that worked the best on the validation dataset and produced the
corresponding results on the testing dataset. The baseline (i.e.,
Heuristic Thresholding) for the dense target selection task was
determined to be 𝑡ℎ𝑟𝑒𝑠 = 0.85, which was directly appropriated
from a similar point-and-select task in the literature with sigmoidal
prediction curves [20]. The baseline for the text matching task
was 𝑡ℎ𝑟𝑒𝑠 = 0.50, which was used to predict participant selections
in a search-intensive task like our text matching task (i.e., users’
intended ingredients in a sandwich-making task [36]).

From the results, the optimized threshold was found to save 0.1
seconds more than the baseline in the dense target selection task
(around 40% of improvement) and 1 second more than the baseline
in the text matching task (around 260% of improvement; Table
2). The optimized threshold also led to an 87% suggestion usage
percentage in the text matching task (around 50% of improvement).
The optimized thresholds were quite different for the dense target
selection task for the time saving optimization (𝑡ℎ𝑟𝑒𝑠 = 0.47) and
usage percentage optimization (𝑡ℎ𝑟𝑒𝑠 = 0.81), while being similar
for the text matching task (0.98 vs. 0.96).

6.3 Simulation 2: Reinforcement Learning
RL can potentially provide tailored solutions based on the target
prediction confidence profile of each trial (e.g., the speed of in-
crease of the model confidence value) by finding an appropriate
threshold to display suggestions that works for that specific profile.
To achieve this, model-free RL techniques were leveraged because
there was a lack of transition dynamics models for our problem.
Thus, the model-free RL agents observed the model confidence es-
timates 𝑞𝑡 from a target prediction model trained on 𝐷𝑡𝑟𝑎𝑖𝑛 , which
were replayed multiple times to the agent. On each trial, the agent
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Figure 6: The trial generation process for the mock-up target prediction model. (A) The model first computes the trial length
based on the log-normal distribution found in Study 1 for task completion time. (B) The model forms a sigmoid function of
task progression with respect to prediction accuracy. (C) The sigmoid function varies within a predefined region (the dashed
lines indicate the 95% CI). (D) The model adds deviations (i.e., spikes and dips) to the trial.

Figure 7: The expected gain formaximizing time savings for
participants (y-axis) whenusing different confidence thresh-
olds (x-axis) based on the validation dataset. The unit of gain
is a timestamp, where the time saved in seconds equals 0.02
· timestamps. Dashed lines represent𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 .

explored different action sequences (i.e., displayed an intelligent
suggestion or not) to ultimately find the optimal action sequence
for a given 𝑞𝑡 trajectory that would lead to the maximum gain.

6.3.1 Problem Formulation. The key elements of the RL agents
were:
• Observation: For a specific timestamp 𝑡 , the agent received the
following observation {𝑝1, 𝑝2, ..., 𝑝𝑚, 𝑑𝑡 }. The probability values
{𝑝1, 𝑝2, ..., 𝑝𝑚} were the model confidence values produced by
the target prediction model over time. The integer 𝑚 was the
memory size of the agent. The list acted like a first-in-first-out
queue where 𝑝𝑚 represented the most recent confidence value
provided by the prediction model and 𝑝1 represented the least re-
cent. The float 𝑑𝑡 recorded the last timestamp when a suggestion
was displayed.

• Action: The agent could take the following two actions based
on the observation {𝑑𝑖𝑠𝑝𝑙𝑎𝑦, 𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦}. The 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 action
represented displaying an intelligent suggestion, so 𝑑𝑡 was up-
dated to the current timestamp 𝑡 . The 𝑛𝑜𝑡 𝑑𝑖𝑠𝑝𝑙𝑎𝑦 action hid the
suggestion.

• Reward: Three reward settings were used to train the RL agents.
The first was 𝑟1, where 𝑟𝑡1 = Gain(𝑡) if a suggestion was dis-
played at 𝑡 , otherwise 𝑟𝑡1 = 0. The second reward setting, 𝑟2,
sought to solve the reward sparsity issue in 𝑟1. Specifically, re-
ward shaping was performed when the suggestion wasn’t dis-
played: 𝑟𝑡2 = Gain(𝑡) if a suggestion was displayed at 𝑡 , otherwise

Table 3: Testing results of RL regarding regarding the dense
target selection (DTS) task and the text matching (TM) task.

Task Strategy Time Saved % Improved

DTS PPO-MLP 0.4087s (0.3285s) 39.87%
DTS ACER-LSTM 0.4084s (0.3362s) 39.77%
TM PPO-MLP 1.6050s (1.7877s) 257.30%
TM ACER-LSTM 1.5671s (1.7328s) 248.86%
Task Strategy Usage% % Improved

TM PPO-MLP 87.31% (18.05%) 51.76%

𝑟𝑡2 = −𝑘 · 𝑝𝑚 . We used a hyper-parameter 𝑘 to penalize the ac-
tion of not displaying any suggestion. An agent received more
penalties if it did not display a suggestion when the model con-
fidence was high (𝑝𝑚). The third reward 𝑟𝑡3 also leveraged the
benefit of dense rewards, but removed the agents’ reliance on
the penalty factor 𝑘 , which may have negative impacts on true
reward maximization. Here, 𝑟𝑡3 = Gain(𝑡)−𝑟𝑡−13 (where 𝑟03 = 0) at
a timestamp 𝑡 . This essentially rewarded the agent based on how
good it performed on a particularly timestamp t, by computing
the contribution of agent’s action at t towards the gain. More
details can be found in Appendix B.1.4.

• Episode End Criteria: The current episode ended if 𝑡 was larger
than the maximum length of the trial 𝑇 , or 𝑑𝑡 was larger than 0
(which meant a suggestion was displayed).

• Initialization: 𝑝𝑚 was initialized to the first confidence value pro-
duced by the target prediction model, while all other probability
values were set to 0. 𝑑𝑡 was initialized to 0.

6.3.2 Methodology. OpenAI Gym [16] and Stable Baselines [34, 56]
were used to build and train the RL agents. Our experimentation
demonstrated that PPO2 with MLP policies was a lightweight and
effective solution and ACER with LSTM was powerful but may
take longer to train. We thus used these two strategies for final
benchmarking. Since training these RL agents consumes a lot of
resources, for demonstration purposes, we only optimized agents
for the time saving objective and one agent for the usage percentage
objective. More training details can be found in Appendix B.1.5.

6.3.3 Results. The results showed that RL agents could provide
around 40% of improvement in the dense target selection task and
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Figure 8: Optimizing both the time saved for participants
and the suggestion usage percentage with Pareto Frontier-
based multi-objective optimization.

260% of improvement in the text matching task as compared to
Heuristic Thresholding (Table 3). Compared to the results from
Section 2, OT and RL led to very similar performance improvement
in the two task scenarios; while RL did produce dynamic thresholds
for each trial. We will return to this in later sections (Section 7.2.3
and 8.2).

6.4 Simulation 3: Multi-Objective Optimization
So far, our approach focused on optimizing a single objective e.g.,
time saved or usage percentage. However, designers may need to
find optimal decisions in the presence of trade-offs between two or
more conflicting objectives (e.g., minimizing task completion time
and maximizing accuracy) in many applications. Multi-objective
optimization is useful in such settings, when more than one ob-
jective function need to be optimized simultaneously. Therefore,
we explored Pareto Frontier-based multi-objective optimization
technique [45, 48], which generates a set of acceptable trade-off
optimal solutions, to optimize the two objectives—time saved and
suggestion usage percentage simultaneously.

A given condition is called Pareto optimal if one dimension
(i.e., objective) could not be improved without worsening other
dimensions (i.e., objectives). In our case, we computed the gain
of timing saving and usage percentage for each condition 𝑞𝑡 and
plotted them on a two dimensional xy-plane (Figure 8). A Pareto
optimal point was identified if there was no point on the plane
that was better in both x and y dimensions. The corresponding
threshold 𝑞𝑡 of the point was then retraced.

Following the above method, we identified thresholds that could
optimize both objectives simultaneously. Thirty-two Pareto op-
timal values were identified for the dense target selection task
(𝑇ℎ𝑟𝑒𝑠 = 0.47, 0.50 − 0.78, 0.80 − 0.81) and three Pareto optimal val-
ues were identified for the text matching task (𝑇ℎ𝑟𝑒𝑠 = 0.96 − 0.98).
The results indicated that the time saved and usage percentage
objectives were somewhat conflicting in the pointing task but not
in the text matching task. Thus COBO can help practitioners who
want to trade-off various optimization objectives.

6.5 Summary
These simulation experiments demonstrated different facets of op-
timization strategies using COBO. The experiments showed how,
theoretically, OT and RL were both effective at determining the
optimal timings at which to show an intelligent suggestion, while
the performance difference between the two strategies was small.

We found that for the dense target selection task, an intelligent
suggestion should be displayed when the model confidence reached
0.47 for optimizing time saved for users and 0.81 for optimizing
suggestion usage percentage. For the text matching task, an intelli-
gent suggestion should be displayed when the model confidence
reached around 0.96-0.98 for optimizing both objectives.

It was also found that a non-optimized threshold could lead to
much worse performance (e.g., 1 second longer in task completion
time and a 30% smaller suggestion usage percentage in the text
matching task) compared to an optimized strategy based on COBO.
Not all intelligent suggestions were shown to be beneficial, however.
Displaying suggestions early in the text matching task lead to a
negative gain in terms of task completion time.

7 STUDY 3 - VALIDATION
The third study consisted of two empirical user experiments of
COBO because of the high number of conditions. The first one com-
pared the time saved and suggestion usage % for Optimal Thresh-
olding (OT) and Heuristic Thresholding (HT), finding that OT saved
participants more time and led to a higher suggestion usage percent-
age in the text matching task. The second experiment compared
OT and RL strategies and found that OT and RL lead to similar
performance.

7.1 Validation 1 - Optimal Thresholding vs.
Heuristic Thresholding

The goal of validation experiment 1 was to empirically verify the
effectiveness of Optimal Thresholding in comparison with Heuristic
Thresholding. We also included a No Suggestion condition to help
contextualize the impact of suggestion conditions relative to when
the interface offers no suggestions.

7.1.1 Participants and Apparatus. Another 26 participants were
recruited (i.e., fourteen women, eleven men, and one non-binary).
Their ages ranged from 22 to 65 (𝑚𝑒𝑎𝑛 = 36.1, 𝑠𝑡𝑑 = 12.8). All
participants had normal or corrected-to-normal vision and were
right-handed. 23 participants had used VR devices 0-5 hours per
week, two used 5-10 hours per week, and one had never used any
VR device before. The same apparatus was used as in the first study.

7.1.2 Methodology. Participants experienced both task scenarios
(i.e., dense target selection and text matching). There were four con-
ditions (Strategy) for the dense target selection task: optimized
thresholds for time saved (TS, 𝑡ℎ𝑟𝑒𝑠 = 0.47), optimized thresholds
for suggestion usage percentage (UP, 𝑡ℎ𝑟𝑒𝑠 = 0.81, which was close
to HT 𝑡ℎ𝑟𝑒𝑠 = 0.85 from a selection task [20]), balanced optimiza-
tion for both objectives (BA, 𝑡ℎ𝑟𝑒𝑠 = 0.64), and no intelligent sug-
gestions (NS). Similar to Study 2, we used highlighting suggestions
for the dense target selection task.

There were three conditions (Strategy) for the text match-
ing task: balanced optimization based on OT (BA, 𝑡ℎ𝑟𝑒𝑠 = 0.97),
HT baseline (HT, 𝑡ℎ𝑟𝑒𝑠 = 0.50 from a search-heavy, mentally-
demanding task [36]), and no intelligent suggestions (NS). The time
saved (𝑡ℎ𝑟𝑒𝑠 = 0.98), suggestion usage percentage (𝑡ℎ𝑟𝑒𝑠 = 0.96),
and balanced (𝑡ℎ𝑟𝑒𝑠 = 0.97) optimization conditions were combined
in this task as the thresholds were very close. We used pop-up no-
tifications for the text matching task. This design enabled us to
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investigate multiple factors while keeping the study size reasonable
at seven experimental conditions.

48 trials of predictions were generated for each task scenario
using the mock-up target prediction model from Study 2. Each trial
contained the probability of the model making a correct suggestion
(i.e., model confidence) over a fixed period of time. The different
thresholding strategies were then applied to each trial to decide the
timing of showing a suggestion. The 48 trials were fixed across con-
ditions to minimize the variances caused by the target prediction
model. The average global centerline of the 48 trials followed a sig-
moid curve. The final correctness of the prediction (i.e., a predicted
candidate which participants visually perceived) was determined
based on the confidence value when displaying a suggestion. For
example, if a strategy decided to display the suggestion when the
confidence value was 0.6, the final prediction then had 60% chance
to be correct. Among the 48 trials, the first 3 trials were treated as
practice trials. In total, 8190 trials were recorded (= 26 participants
× 7 conditions × 45 repetitions) during this experiment.

A similar experimental procedurewas employed as the first study.
However, in this study, after completing each condition, participants
were asked to complete a questionnaire that had three 7-point Likert
scale questions probing easement, physical workload, and mental
workload. The order of the task scenarios was randomized and the
conditions within the scenarios were counterbalanced. The order
of the formal trials were also randomized, however, the practice
trials were always the same.

7.1.3 Analysis and Results. While data was initially collected for 26
participants, P1, P14, P19, and P26 were excluded as they never used
intelligent suggestions in one or both of the tasks. The trials where
participants had finished before the suggestion appeared (i.e., 169
(3.61%) dense target selection trials and 518 (14.76%) text matching
tasks) were removed from the dataset. Because a mock-up target
prediction model was used, there could have been trials where
participants finished earlier than the pre-determined time period.
Thus, only trials where an intelligent suggestion was displayed
were considered. We also removed outliers (𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑) (i.e., 45
(0.96%) dense target selection trials and 42 (1.20%) text matching
tasks). These pre-processing steps resulted in 6156 trials remaining
for analysis (i.e., 3746 trials for dense target selection and 2410 trials
for text matching). The trials were later averaged across participant
and condition. The overall accuracy was 93.14% for the dense target
selection task and 98.98% for the text matching task.

For the dense target selection task, a linear mixed model with
arcsinh transformation (as determined by the bestNormalize pack-
age) suggested that Strategy had a significant main effect on task
completion time (𝐹 = 5.02, 𝑝 = .003). A post-hoc analysis with
Bonferroni correction showed that the completion time in NS was
significantly longer than BA (𝑝 = .002), and marginally significant
longer than TS (𝑝 = .084) and UP (𝑝 = .135) (all other 𝑝 > .887).
Another linear mixed model with exp transformation indicated that
Strategy had a significant main effect on suggestion usage percent-
age (𝐹 = 65.69, 𝑝 < .001). Post-hoc analysis suggested that usage
percentages of UP (𝑝 = 0.056) and BA (𝑝 = 0.140) were marginally
significant higher than TS. See Figure 9A-B for an overview.

For the text matching task, a linear mixed model with sqrt trans-
formation suggested that Strategy had a significant main effect

on task completion time (𝐹 = 59.79, 𝑝 < .001). A post-hoc analy-
sis showed that participants performed significantly faster in BA
than HT (𝑝 < .001) and NS (𝑝 < .001). HT was also found to have
a significantly shorter task completion time than NS (𝑝 < .001).
Another linear mixed model with exp transformation suggested
that Strategy had a significant main effect on suggestion usage
percentage (𝐹 = 420.45, 𝑝 < .001). A post-hoc analysis indicated
that BA had a significantly higher suggestion usage percentage
than HT (𝑝 < .001). See Figure 9C-D for an overview.

For the subjective questions, pair-wise comparisons (with Bon-
ferroni correction) identified that BA led to lower mental workload
(𝑝 = .012), and were possibly easier to use (𝑝 = .053), than NS
in the text matching task. This suggests that using an intelligent
suggestion could reduce workload and improve user experience.

7.1.4 Discussion. The empirical results demonstrated the effective-
ness of the COBO optimization framework for the text matching
task. As expected from the theoretical evaluation, the optimized
condition (BA) led to shorter task completion times and higher
suggestion usage % than the baseline conditions (HT and NS).

The benefits due to COBO were more obvious in the text match-
ing task compared to the dense target selection, mainly because the
dense task was very rapid and, as such, it was more difficult to have
substantial differences in suggestion timings (thus their effect on
time saved for users and suggestion usage percentage). However,
the patterns across the two tasks were consistent. The significantly
higher suggestion usage in text matching, in particular, could be
impactful in lowering user’s effort, which is suggested in the lower
mental load scores of the balanced optimization.

7.2 Validation 2 - Optimal Thresholding vs. RL
The primary goal of the validation experiment 2 was to compare
Optimal Thresholding (OT) vs. RL strategies for time saved and
suggestion usage percentage. Based on the findings from validation
1, in this study, only the text matching task was used, as it was more
likely to lead to verifiable performance differences in an empirical
user study than the dense target selection task.

7.2.1 Participants and Apparatus. 12 participants (6 women, 5 men,
and 1 non-binary) who had participated in the first validation
study were recruited for the second validation study. Since the
time interval between validation experiment 1 and 2 was more
than a week and the strategy differences were hard to verify by
seeing only the suggestion itself, it was presumed to be reason-
able to reuse participants. Participants’ age ranged from 22 to 63
(𝑚𝑒𝑎𝑛 = 35.9, 𝑠𝑡𝑑 = 10.9). The same apparatus were used as in
validation study 1.

7.2.2 Methodology. The study employed a 2 × 2 within-subject
design: Objective (time saved and suggestion usage percentage) ×
Strategy (OT and RL). Based on Study 2, 𝑡ℎ𝑟𝑒𝑠 = 0.98 was used for
time saved optimization and 𝑡ℎ𝑟𝑒𝑠 = 0.96 was used for suggestion
usage percentage optimization. The PPO-MLP agent from Study 2
was used.

The same 48 trials were used to generate the corresponding sug-
gestion timing in each condition, and a similar study protocol was
employed as validation study 1. In total, 2160 trials were collected
(= 12 participants × 2 objectives × 2 strategies × 45 repetitions).
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Figure 9: Results of average task completion time and suggestion usage percentage in the first validation experiment of Study 3.
The four conditions in the dense target selection task were time saved optimization (TS), usage percentage optimization (UP),
balanced optimization (BA), and no suggestion (NS). The three conditions in the textmatching taskwere balanced optimization
(BA), Heuristic Thresholding (HT), and no suggestion (NS). The error bars represent𝑚𝑒𝑎𝑛±𝑠𝑡𝑑 . ** means 𝑝 < .01 and *** means
𝑝 < .001.

Figure 10: Results of average task completion time (A) and suggestion usage percentage (B) in the second validation experiment
of Study 3. The four conditions were usage percentage optimization with RL (UP-RL) and Optimal Thresholding (UP-OT) and
time saved optimization with RL (TS-RL) and Optimal Thresholding (TS-OT). The error bars represent𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 . (C) and (D)
show example trials where RL and Optimal Thresholding (OT) yielded noticeably different suggestion timings. On average,
RL saved 0.31s less in (C) and 1.79s more in (D) than OT.

7.2.3 Analysis, Results, and Discussion. After removing outliers
(𝑚𝑒𝑎𝑛 ± 3𝑠𝑡𝑑 , 11 trials, 0.51%) and trials where participants fin-
ished before the suggestion appeared (709 trials, 32.8%), 1440 trials
remained for analysis. The overall accuracy was 99.59%.

A linear mixed model with sqrt transformation was not able to
identify that Strategy had a significant main effect on task com-
pletion time (𝐹 = 0.18, 𝑝 = .674). Another linear mixed model with
Yeo-Johnson transformation was not able to identify that strat-
egy had a significant main effect on suggestion usage percentage
(𝐹 = 0.74, 𝑝 = .397). Strategy was not shown to have significant
main effects on any of the subjective scales. In summary, our results
did not find any significant differences between OT and RL that
lead to identifiable differences in the optimization metrics (Figure
10A-B).

We were further interested to see whether RL proposed different
suggestion timings than OT in the 48 trials. For the time saved
optimization, RL and OT led to a similar suggestion timing (Δ <
0.1s) in most cases (72.9%). For 16.8% of the cases, the difference
between them was > 0.5s. For usage percentage optimization, there
were 68.8% trials where RL and OT led to a similar suggestion
timing (Δ < 0.1s) and 8.3% trials that resulted in difference > 0.5s.
In the trials with difference >0.5s, RL always attempted to display

an earlier suggestion to save more time for users. On average, RL
showed the suggestions 0.79s (𝑠𝑡𝑑. = 0.38s) earlier in these trials as
compared to OT.

Figure 10C-D demonstrate two examples wherein RL finds dif-
ferent thresholds than OT. RL strategy seems to be observing the
trend of the model confidence curve and displaying a suggestion
once the curve is likely to plateau in the near future. Figure 10C
shows a trial where RL saved 0.31 less than OT on average, and
Figure 10D shows a trial where RL saved 1.79s more. Thus, RL is
certainly able to learn a strategy that results in dynamic thresholds
that match OT performance on average, but it remains to be seen
if/when RL may be able to outperform optimal thresholds.

8 DISCUSSION
We’ve conducted a series of three studies that demonstrated the
theoretical and empirical effectiveness of our COBO (cost-benefit
optimization) framework for suggestion timing optimization. In
this section, we further reflect on our experiences in terms of the
cost and benefit quantification of the two optimization objectives
and the strength of RL as an optimization strategy as compared to
Optimal Thresholding. We also discuss the generalizability of the
framework to other applications and the limitations of our studies.
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8.1 Optimization Objectives
Our work demonstrates a successful optimization of two objec-
tives: time saved by users and suggestion usage percentage. The
COBO framework is designed to help optimize various objectives,
either individually or simultaneously, as long as a cost and benefit
quantification method can be determined. We used data collected
from participants (Study 1) to construct cost and benefit functions
with variables such as response times, response rates, and delayed
times. The validation studies indicated that the constructed cost and
benefit functions were good approximations of the ground truth.

The time savings in our case, even though significant, are small
especially in the dense target selection task. However, existing work
has shown that users prefer intelligent suggestions despite nega-
tive time costs [54] because they were considered less physically
demanding and effortful. The fact motivated us to quantify the
benefit of intelligent suggestions beyond performance improve-
ments. While usage percentage is an effective proxy that assumes
that higher suggestion usage is always beneficial for a user to
lower their interaction friction [38], a highly promising avenue for
future work is in optimizing directly for effort, physical and mental-
demand especially as we become better at real-time estimations of
quantities like arm fatigue [18] and satisfaction [24, 53].

For simplicity, we omitted some rare conditions during cost-
benefit quantification. For example, we excluded the trials where
users mistakenly triggered the selection of an incorrect suggestion.
Such instances were very uncommon (0.4% overall) and did not
significantly impact the suggestion usage percentage or the time
cost of an incorrect suggestion. However, future endeavors can ex-
tend our framework to consider mistaken triggering of an incorrect
suggestion especially if those instances are not rare and/or if they
require a costly recovery from the mistake [12, 40]. One simple way
might be to consider modeling this as a constant time cost (e.g.,
recovery time).

8.2 RL as an Optimization Strategy
We found that RLwas able to learn a successful strategy and produce
dynamic thresholds across trials. However, RL’s dynamic thresholds
weren’t able to outperform the single optimal threshold on average
in our simulation and validation study.

As we report, there were a small, but significant percentage of
trials where RL’s suggestion timing differed by >0.5s compared
to OT. However, we did not find any big discernible patterns in
these trials compared to others. It will be worth investigating task
contexts where the percentage of such trials is higher. Another
reason for RL’s similar performance to OT might be that the room
of improvement for RL was small, as Optimal Thresholding (OT)
already performed very well. The analysis demonstrated that even
the theoretical maximum of a perfect agent (i.e., agent that maxi-
mizes the gain by knowing the whole trial profile) can lead to no
larger than 0.18s and a 4.3% improvement over OT in task comple-
tion time and suggestion usage percentage, respectively, with our
dataset. It will be interesting to see if there are contexts where OT
does not achieve performance close to the theoretical maximum.

We can propose two variables to explore here that may help
diversify our task context. First, is to look at trials with durations
that are much more variable. Looking at the validation study data

more closely, we found a weak correlation between the time-saving
differences (𝑅𝐿 −𝑂𝑇 ) and trial length (𝑅2 = 0.10) which indicated
that the RL agent saved more time than OT in longer duration trials.
Second, is to look at target prediction models that are not sigmoidal
in nature (as an example, models that start with a high prior con-
fidence using earlier user activity), and may follow patterns that
cannot be easily captured using a single OT.

RL may also prove to be useful in scenarios where an interface
wants to show more than one intelligent suggestion and the sug-
gestions get updated based on users’ behavior. It might be hard
to directly apply OT in these scenarios. Also, in case a designer
wants to enable different suggestion types within the same task
(example, both highlighting and pop-up notification), an RL agent
could choose the most appropriate suggestion type based on the
gain of those options at different timings. An interesting area of
exploration is the long-term use of such intelligent suggestion in-
terfaces. A user may form an expectation of how well the model
performs, which can in turn influence their response behavior, thus
changing the cost-benefit quantification over time. An online RL
agent may also prove useful in such cases.

8.3 Applications
This research has demonstrated the application of COBO in two
task scenarios (dense target selection and text matching) and two
objectives (minimizing user task completion time and maximiz-
ing intelligent suggestion usage). The two tasks and suggestion
types were intentionally chosen to be representative of popular use
cases. The dense target selection task aims to simulate physically-
demanding tasks where users need to select objects in cluttered
environment [46, 64], and the text matching task mimics real-world
search-heavy scenarios such as searching for ingredients from a re-
ceipt [25, 63]. Object highlighting and pop-up notification are both
common visualizations to inform users about system events [57].
Additionally, in Appendix B.3, we also present results on success-
fully applying COBO on a dataset from the literature which records
hand movement trajectories when reaching virtual objects at differ-
ent locations. We further envision COBO being extensible to other
tasks and facilitation.

8.3.1 Extending to other tasks. The framework can be retrained for
other applications that want to leverage intelligent predictions us-
ing target prediction models that rely on hand, head, gaze, and other
contextual information [31, 70] in selection tasks such as pointing,
visual search, and text-entry. By following the COBO framework,
practitioners may choose different models, objectives, and cost-
benefit quantification methods which are tailored for their applica-
tions. Overall, based on our user-centric computational framework,
designers are more likely to provide intelligent suggestions that
support their intended goals, rather than leading to unexpected
outcomes [50, 54].

8.3.2 Extending to other facilitation. COBO’s framework can also
be extended to facilitate techniques other than intelligent sugges-
tions such as expanding [44] or auto-selecting [1, 4] a predicted
target, as well as for more than one suggestions simultaneously or
sequentially.
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8.4 Target Prediction Model
The current research builds on certain assumptions to simplify the
complex problem space. One assumption is the use of a mock-up
target prediction model, as we wanted to simulate a highly repre-
sentative prediction model, rather than choosing one at random.
Therefore, we carried out a literature survey to extract the com-
monalities among prediction models and then created a simulation
from those commonalities (Section 6.1). However, our inspirations
were from human behavior models of target reaching [20] and
searching [36] where the model prediction accuracy was typically
high during the later stage of the task because the selection indi-
cator (e.g., hand or gaze point) was “approaching” or “almost on”
the target and the user was just “fine-tuning” the selection of the
target. For example, in the text matching task, we imagined that
the gaze direction would reach the targeted object way before the
controller-based manual pointing selection (i.e., the model has very
high confidence based on gaze features no matter the position of the
hand pointer), as Huang et al. [36] could correctly anticipate the in-
tended object through gaze sequences 1.8s before a speech request.
We acknowledge that there are other types of models that may not
have such rich features. Future work can deploy this framework
to any prediction model to test it on new use cases. This, however,
did mean that the intelligent suggestions were not delivered dy-
namically based on a user’s behaviour. For experimental control, it
was important that this be the case while developing and validating
the COBO framework. However, future research should investigate
how the framework responds to a real prediction model.

One additional consideration of the current approach is that it re-
quires a dataset of model confidence curves to calculate user-centric
costs and benefits over time. In a real scenario where a designer
has a target prediction model and its training dataset, the train-
ing dataset should contain trials with necessary features (e.g., user
behavior data, completion times) so the designer can directly use
those for confidence curve generation and cost-benefit computation
(see Appendix B.3 for an example). In a condition where the feature
dataset is missing, another possible solution is to apply models to
simulate user behavior. During the planning phase of this research,
our initial idea was to use existing computational models (e.g., min-
imum jerk model) to generate a large volume of user behavior data.
However, we encountered two challenges. First, we did not know
how users would behave according to correct/incorrect suggestions
that appeared at different timings (so it was hard to incorporate
this element into the model). Second, a user behavioral model for
the text matching scenario is still largely underexplored (unlike
bio-mechanical behavior modeling for pointing and reaching as in
Cheema et al. [18] and Fischer et al. [23]). Therefore, we decided
to collect new data from real users. However, we do believe using
model-generated datasets for user cost-benefit quantification can
be helpful in the future with more advances in the field.

9 CONCLUSION
Predictive systems are helpful ways to lower input friction and im-
prove user experiences in current VR/AR systems [38]. Specifically,
selection facilitation techniques that leverage target predictionmod-
els can alleviate the need for manual pointing and visual search,
and can potentially lead to quicker, easier, and more comfortable

interaction. While current target prediction models only offerwhich
target a user intends to select, we built a framework (COBO) that
helps determine when an intelligent suggestion should be displayed
to maximize its benefits.

COBO is a computational framework that determines the opti-
mal timing of an intelligent suggestion for each interaction based
on user-centric costs and benefits. In a set of studies, we demon-
strated that COBO is effective at determining the optimal timing
of intelligent suggestions. The first study focused on measuring
and quantifying the costs and benefits of an intelligent suggestion
displayed at different timings when trying to satisfy two objectives
(i.e., time saved for users and suggestion usage percentage) dur-
ing two tasks (i.e., dense target selection and text matching). We
then run simulations with two optimization strategies (i.e., Optimal
Thresholding and RL) for single- and multi-objective optimizations.
We found both Optimal Thresholding and RL led to better perfor-
mance compared to heuristic-based thresholding approaches. For
example, both optimization strategies led to around 40% improve-
ment in terms of task completion time in the dense target selection
task and 260% improvement in the text matching task. We also
demonstrated the effectiveness of COBO for multi-objective opti-
mization. The third study contained two validation experiments
that compared Optimal Thresholding, RL, heuristic-based thresh-
olding, and no suggestion conditions. The experimental results
suggested that COBO-based optimization strategies led to shorter
task completion times and higher suggestion usage percentages,
and were preferred by participants in the text matching task when
compared to baselines.

From both theoretical and empirical perspectives, we showed
that an optimized strategy based on COBO can perform signifi-
cantly better than non-optimized heuristic-based approaches in
maximizing the time saved by users and increasing suggestion us-
age percentages. Overall, we envision the introduced framework
will unlock effective intelligent suggestions, which will benefit
future predictive systems.
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A STUDY 1 - DATA COLLECTION
A.1 Task Scenarios
Two task scenarios, representative of common interaction tasks that
are effortful to perform, were employed. The dense target selection
task represented a manually-intensive task, where participants
needed to select a small object located at the center of a cluster [46,
64]. The text matching task served as a mentally-demanding task,
where participants needed to find and select an object with text that
matched a target text. This task simulated real-world, search-heavy
scenarios like searching for ingredients from a receipt, finding street
names on a map, or browsing through a menu [52].

A.1.1 Dense Target Selection Task. This task was inspired by exist-
ing literature on small and dense target selection [46, 64]. The goal
was to select the earth icon at the center of a planet cluster (Figure
3, left). The cluster was surrounded by other planet icons, which
were randomly sized and distributed to add noise to the task envi-
ronment. This setting required participants to aim precisely [64]
and simulated scenarios where participants need to select objects
in a cluttered virtual scene (e.g., select a keychain in a messy room).

The angular size of the target was set to 1◦, which was deter-
mined by previous research to be sufficiently challenging [70]. The
angular distance, or required movement amplitude, was fixed to
90◦, and the target was generated in a predefined list of locations
that were no more than 30◦ away from the horizontal plane. This
target placement required participants to rotate their heads to find
the out-of-view object, which added physical workload, without
requiring that they overextend their neck. The distractors that were
located directly adjacent to the target were the same size as the
target, while others were randomly sized between 0.6◦ and 2◦.

Participants started the task by pointing at a button at a fixed
center position. A blue 3D arrow then appeared to indicate the
location of the target. The arrow was designed to minimize search
time in this task [69]. Participants then followed the direction of
the arrow to point at the target through the right-hand controller
and pressed the trigger to confirm their selection.

A.1.2 Text Matching Task. This task was designed to require par-
ticipants to perform a difficult visual search (mentally-demanding)
[25, 63]. Participants were required to find a target text string that
matched a prompt (Figure 3, right) in a 6×7 grid of texts strings.

The angular distance between the candidates was 10◦ horizon-
tally and 2.8◦ vertically to make sure all objects were located within
field of view of participants to minimize their physical workload
(e.g., turning their bodies to search for the target). The object radius
was set to 1.5◦ and all objects were placed on a spherical plane.

Participants started the task by memorizing the target string and
selecting a button at a fixed center position. All candidate strings
then appeared with the goal text reminder at the top of the grid. To
complete a task trial, participants pointed at the target icon using
the controller and pressed the trigger to select it.

A.2 Suggestion Method
Two suggestion methods were used in the study—a highlighting
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fluorescent outline was displayed around the
suggested object (Figure 4 left). A symbol of Button A also appeared

at a pre-determined, unoccluded position close to the indicated ob-
ject to depict that the object could be selected by pressing the
Button A on the Touch controller. Participants could also cancel
the suggestion by tilting the joystick to the right. Note that the
highlighting suggestion was in-situ, so it remained at the object
location without following the direction participants were looking.

With the pop-up notification suggestion, a suggestion window
appeared at the bottom of the participant’s current viewing di-
rection (Figure 4 right) [57]. The suggestion presented either a
predicted icon in the dense target selection task or a text string in
the text matching task. When participants rotated their viewing
direction, the pop-up notification followed the viewing direction
using horizontal linear interpolation. Linear interpolation was not
applied in the vertical dimension to avoid the suggestion being
“stuck” on the head-mounted display, which may have caused vi-
sual discomfort. Like the highlighting suggestion, participants could
quickly access the suggested object via the Button A or discard the
suggestion by tilting the joystick to the right.

A.3 Example Data Trials
We show example data trials collected in session 2 in Figure 11.

A.4 Results - Session 2
Figure 12 shows the average response times and delayed times for
the suggestion methods and task types. We performed significance
tests with linear mixed models on response time and delayed time.

A.4.1 Response Time. Response time was defined the time elapsed
between the appearance of a correct intelligent suggestion and a
participant’s selection of that suggestion. First, the Yeo-Johnson
transformation, as chosen by the bestNormalize package in R, was
applied to normalize the data. A linear mixed model was then used
to identify whether different task types and suggestion methods
lead to different response times across various suggestion timings.
We set Task Type, Suggestion Method, and Suggestion Timing
as fixed factors and Participant as a random factor. The linear
mixed model indicated that there were interaction effects between
Suggestion Method × Suggestion Timing (𝐹 = 125.18, 𝑝 < .001)
and Task Type × Suggestion Timing (𝐹 = 49.47, 𝑝 < .001). As
Task Type and SuggestionMethod led to different response times
across Suggestion Timing, we used multivariate adaptive regres-
sion splines (MARS) to model the relationships between suggestion
timing and response time.

A.4.2 Response Rate. Response rate was defined as the likelihood
that participants accepted a correct suggestion. Significance testing
was not applied because the “rate” variable was only meaningful if
we considered multiple data points.

A.4.3 Delayed Time. Delayed time was the time delay that was
incurred due to incorrect suggestions. Similar to response time,
an arcsinh transformation as suggested by the bestNormalize
package, was applied and a linear mixed model was used to iden-
tify significant interaction effects between Task Type and Sug-
gestion Method with regard to Suggestion Timing. The results
indicated a significant effect of Task Type × Suggestion Timing
(𝐹 = 5.30, 𝑝 = .021), but not Suggestion Method × Suggestion
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Figure 11: Example data trials from session 2.

Figure 12: Average response times and delayed times for the
suggestion methods (highlighting and pop-up notification)
and task types (dense target selection and text matching).
The error bars represent𝑚𝑒𝑎𝑛 ± 𝑠𝑡𝑑 .

Timing (𝐹 = 1.24, 𝑝 = 0.267) nor Suggestion Method × Task
Type × Suggestion Timing (𝐹 = 0.01, 𝑝 = .928).

B STUDY 2 - SIMULATION
B.1 Target Prediction Model Mock-up
B.1.1 Target Prediction Model Observations. A selection predic-
tion model based on the available data [20] was replicated and we
observed how the predicted probability of the most likely object
changed as the task progressed. Further, we drew inspiration from
existing research on gaze-based target prediction [15, 36]. From
these explorations, we made the following observations:

• The global centerline of model confidence over time (i.e., the
average trend across all trials) seems to be a sigmoid-like
curve [14, 15, 20, 74]. Intuitively, model confidence acceler-
ates from a low point and becomes steady as it approaches an
asymptote.

• By replicating [20] and observing results in [36], we found that
while the local centerline of themodel confidence value (i.e., the
general trend of each trial) seems to roughly follow a sigmoid-
like curve, it can deviate from the global centerline. While the
local centerline can still be approximated by a sigmoid curve,
the speed of increase can differ on each trial.

• The final confidence curve of each trial, rather than the general
trend, contains seemingly randomly-distributed deviations
(i.e., spikes and dips) from the local centerline. The evidence
was found by replicating [20] and observing results in [36].

B.1.2 Mock-up Prediction Model Generation. Based on these obser-
vations, the following trial generation process was formulated for
our mock-up prediction model. Our goal was to produce reasonable
model confidence curves that mimic an actual prediction model.

• When starting to generate a data trial, the model first sam-
ples a trial length 𝑡𝑚𝑎𝑥 based on the log-normal distribution

regarding user task completion time found in Study 1 (Fig-
ure 6A). This sampling approach allows the final dataset to
approximate the distribution of user task completion time.

• The model then generates a global centerline based on a sig-
moid function𝑦1 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑥, 𝑘, 𝑥0, 𝑢, 𝑙) where𝑘 is the logistic
growth rate, 𝑥0 is the sigmoid’s midpoint,𝑢 is the upper bound,
and 𝑙 is the lower bound (Equation 7). This simulates the ob-
servation that the global centerline follows a sigmoid curve in
an actual prediction model (Figure 6B).

𝑦1 =
𝑢 − 𝑙

1 + 𝑒−𝑘 (𝑥−𝑥0)
+ 𝑙 (7)

• To simulate the variances in a local centerline, the model gen-
erates a Bell curve 𝑦2 = 𝑏𝑒𝑙𝑙 (𝑥, 𝜇, 𝜎) (Equation 8) to define the
area of deviation (see Figure 6C). The distance between the
local centerline 𝑦3 and the global centerline is probabilistically
sampled from a Gaussian distribution following Equation 9,
where 𝜇𝑟 and 𝜎𝑟 are the predefined mean and standard devia-
tion of a Gaussian distribution. By generating randomnumbers
from a Gaussian distribution (with random.gauss), it is more
likely that a local centerline is close to the global centerline
than further away.

𝑦2 =
1

𝜎
√
2𝜋

𝑒
−(𝑥−𝜇)2

2𝜎2 (8)

𝑦3 = 𝑦1 + 𝑦2 · random.gauss(𝜇𝑟 , 𝜎𝑟 ) (9)
• The final step of the mock-up model is to generate spikes
and dips based on the local centerline. To achieve this, the
model uses a pre-determined probability 𝑗𝑝 to represent the
likelihood of jumping to another randomly generated local
centerline (new𝑦3) at a particular timestamp 𝑡 . The model goes
through all timestamps in the trial and modifies the curve de-
pending on it a jump will occur. The resulting curve preserves
the property of previous steps: by averaging all generated tri-
als, the centerline still follows a sigmoid function and the local
centerline deviates within a predefined region. The model fur-
ther corrects all probabilities larger than 1 to 1 and smaller
than 0 to 0. A sample of a generated trial can be found in Figure
6D.

B.1.3 Dataset Generation. We pre-defined the parameters for the
trial generation in later analyses. For the global centerline-related
parameters, we set logistic growth rate 𝑘 = 2, sigmoid’s midpoint
𝑥0 = 𝑡𝑚𝑎𝑥/2, upper bound 𝑢 = 1, lower bound 𝑙 = 0. This simulated
a model that knew little information when users started a trial
and increased its confidence over time until it reached an almost
perfect understanding when users finished the trial, similar to the
prediction models in [20] and [36]. Regarding the local centerline-
related parameters, we set the bell curve mean 𝜇 = 𝑡𝑚𝑎𝑥/1.9 and
standard deviation 𝜎 = 1. We also set the Gaussian distribution
mean 𝜇𝑟 = 0 and standard deviation 𝜎𝑟 = 1. The random jump rate
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𝑗𝑝 was fixed at 0.05. The final results yielded visually similar curves
as in the literature [20, 36]. The frame rate was determined to be
50 (0.02 seconds per frame).

B.1.4 RL Reward Settings. Three reward settings were used to train
the RL agents. The first reward setting was 𝑟1, where 𝑟𝑡1 = Gain(𝑡)
if a suggestion was displayed at 𝑡 , otherwise 𝑟𝑡1 = 0. However, the
sparsity in 𝑟1 (i.e., the agent only receives a single reward per trial)
prevented many of the agents from learning to display a suggestion
at all.

The second reward setting, 𝑟2, sought to solve the reward spar-
sity issue. Specifically, reward shaping was performed when the
suggestion wasn’t displayed: 𝑟𝑡2 = Gain(𝑡) if a suggestion was dis-
played at 𝑡 , otherwise 𝑟𝑡2 = −𝑘 ·𝑝𝑚 . We used 𝑘 to penalize the action
of not displaying any suggestion. Furthermore, an agent received
more of a penalty if it did not display a suggestion when the model
confidence value was high (𝑝𝑚). The penalty factor 𝑘 was treated
as a hyper-parameter during training. While 𝑟2 worked well and
enabled the agents to learn to display suggestions, a static value
of 𝑘 might have been limiting. In particular, the penalty of not
displaying a suggestion should have changed as training progresses
for true reward (i.e., gain function) maximization. In other words,
the agent reliance on 𝑘 should be reduced over the training process.
Thus, 𝑘 was decreased as the training progressed.

The third reward setting also leveraged the benefit of dense re-
wards, but removed the agents’ reliance on the penalty factor 𝑘 ,
which may have negative impacts on true reward maximization. In
this setting, 𝑟𝑡3 = Gain(𝑡) − 𝑟𝑡−13 (where 𝑟03 = 0) at a timestamp 𝑡 .
This setting essentially rewarded the agent based on how good it
performed on a particularly timestamp t, by computing the contri-
bution of agent’s action at t towards the gain. This reward setting
thus allowed agents to learn directly from gain functions with dense
feedback.

B.1.5 RL Training Methodology. OpenAI Gym [16] with Stable
Baselines [34] (for recurrent policies) and Stable Baselines3 [56]
(for MLP policies) were used to build and train the RL agents. A
preliminary analysis was first run on the toy dataset to determine
the appropriate model-free RL training algorithms (PPO2, DQN,
A2C, and ACER), reward settings (𝑟1, 𝑟2, and 𝑟3), policy architectures
(MLP and LSTM), policy network size, and training epochs for both
task scenarios using the default hyper-parameter settings from the
Stable Baselines. This experimentation demonstrated that the PPO2
training with MLP policies was a lightweight and effective solution.
ACER with LSTM was the other powerful solution that worked
well, but may take longer to train. 𝑟3 was also found to be more
suitable for the dense target selection task, while 𝑟2 was better for
the text matching task. The training with 4𝑒6 steps was sufficient
for MLP policies and 2𝑒6 steps was adequate for LSTM policies,
based on the convergence of gain in the validation dataset.

After the preliminary exploration, full-range hyper-parameter
searches were performed with Optuna [5] using the training dataset
for memory size𝑚, penalty 𝑘 , network size, activation function,
learning rate, batch size, discount factor 𝛾 , and other algorithm-
related parameters following the guidance of RL Baselines Zoo
[55]. The model was then fine-tuned by focusing on several key
parameters related to training. The training was stopped when

the gain in the validation dataset converged. After training all the
agents, their performance on the validation and testing dataset
were benchmarked.

B.2 Validation and testing results
Detailed validation and testing results of Optimal Thresholding,
Heuristic Thresholding, and RL can be found in Table 4 and Table 5.

B.3 Simulation 4: Revisiting a Prior Study
To determine the optimal timing of highlighting suggestions if we
were to use an existing model for intelligent suggestion, we ran
another simulation using an open-sourced dataset from a prior
work [20]. The dataset contained 809 trials with four prediction
features over time (i.e., position x, y, z, and rotation yaw every 10
milliseconds) and a final selected target. The original work was
replicated with respect to data augmentation, LSTM structure, and
training protocol, resulting in a model with 95.06% testing accuracy.
For COBO, the features were refit to the trained model to obtain
model confidence values over time for the 807 trials.

While it could be challenging to replicate the original study and
acquire empirical data on participant response behavior towards in-
telligent suggestions, the following assumptions were made for the
cost and benefit functions: (1) It would take participants 0.5 seconds
(i.e., 0.25 seconds reaction time and 0.25 seconds trigger pressing
time) to respond to a correct suggestion; (2) An incorrect suggestion
would cause 0.25 seconds (i.e., reaction time) of delay; (3) partici-
pants would act rationally [62] and would not use a suggestion if
the estimated response time (current time + 0.5 seconds) was larger
than task completion time of that trial without any suggestion.

Under these assumptions, the optimized threshold for the two
objectives were calculated using the COBO framework. The results
show that the optimized threshold for completion time (𝑡ℎ𝑟𝑒𝑠 =
0.90) was able to save 0.0801 seconds (𝑠𝑡𝑑. = 0.1540 seconds) and
the optimized threshold for the usage percentage (𝑡ℎ𝑟𝑒𝑠 = 0.82) led
to 52.27% (𝑠𝑡𝑑. = 42.20%) of clicks. Nine Pareto optimal values were
also found(𝑡ℎ𝑟𝑒𝑠 = 0.82 − 0.90). The performance improvement in
terms of time savings was small for this selection task, although
a higher suggestion usage percentage could lead to better user
experiences. The original authors’ estimate based on the prediction
accuracy alone (𝑡ℎ𝑟𝑒𝑠 = 0.85) was close to our simulation results.

19



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Table 4: Validation and testing results when using Optimal Thresholding and Heuristic Thresholding on the time saved for
users and on suggestion usage percentages.

Task Type Strategy (Threshold) Time Saved/Usage% (Std.) % Improved Time Saved/Usage% % Improved
Validation Test

Ti
m
e
sa
ve
d Dense Target Selection Optimal Thresholding (0.47) 0.4073s (0.3169s) 44.07% 0.4073s (0.3202s) 39.39%

Dense Target Selection Heuristic Thresholding (0.85) 0.2827s (0.3597s) - 0.2922s (0.3645s) -
Text Matching Optimal Thresholding (0.98) 1.5822s (1.7991s) 268.38% 1.6211s (1.7946s) 260.89%
Text Matching Heuristic Thresholding (0.50) 0.4295s (1.1225s) - 0.4492s (1.1440s) -

Us
ag
e
% Dense Target Selection Optimal Thresholding (0.81) 65.85% (17.70%) 0.64% 65.69% (18.30%) 0.36%

Dense Target Selection Heuristic Thresholding (0.85) 65.43% (20.24%) - 65.45% (20.42%) -
Text Matching Optimal Thresholding (0.96) 87.33% (18.44%) 50.72% 87.17% (18.53%) 51.52%
Text Matching Heuristic Thresholding (0.50) 57.94% (15.85%) - 57.53% (15.63%) -

Table 5: Validation and testing results of RL regarding time saved for users and suggestion usage percentages.

Task Type Strategy Time Saved (Std.) % Improved Time Saved % Improved Usage% (Std.) % Improved Usage% % Improved
Validation Test Validation Test

Pointing PPO-MLP 0.4078s (0.3253s) 44.25% 0.4087s (0.3285s) 39.87% - - - -
Pointing ACER-LSTM 0.4079s (0.3354s) 44.29% 0.4084s (0.3362s) 39.77% - - - -
Text Matching PPO-MLP 1.5673s (1.7878s) 265.91% 1.6050s (1.7877s) 257.30% 87.33% (18.18%) 50.72% 87.31% (18.05%) 51.76%
Text Matching ACER-LSTM 1.5275s (1.7418s) 240.05% 1.5671s (1.7328s) 248.86% - - - -
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Chapter 8

DISCUSSION

In this chapter, we reflect on our solutions of occlusion visualizations, complementary modali-
ties, and predictive models to address the research challenge of enhancing Virtual Hand and
Raycasting. Based on our research findings, we illustrate how to apply the proposed techniques
to improve selection and manipulation in complex VR interaction scenarios with different
environmental settings and task requirements and discuss the caveats of using them. We also
elaborate on the internal and external validity of our studies and point out potential limitations.
Going beyond the research work presented in this thesis, we envision what future VR selection
and manipulation should look like. To move steadily towards more usable and useful 3D
user interactions, we also present a framework for developing and determining appropriate
solutions for different application scenarios. We outline future research directions regarding,
for example, explainable theories and technique accessibility.

8.1 Selection and Manipulation for Complex VR Interaction
The most prevalent mid-air interaction techniques for object selection and manipulation
(i.e., Virtual Hand and Raycasting) have limited capability in dealing with more complex
application scenarios that contain small, distant, and occluded targets and require efficient,
precise, versatile, and prolonged operations. In this thesis, we present new solutions that can
enhance the selection and manipulation of complex VR interactions (RQ).

RQ. How to enhance Virtual Hand and Raycasting for target selection and manipulation
in complex VR interaction scenarios?

In Chapters 4, 5, 6, and 7, we presented occlusion visualization techniques, complementary
modalities of gaze and on-body surface, and optimized predictive models to improve VR
selection and manipulation. These solutions enable new interactions with small, distant, and
occluded objects, and were demonstrated, through a set of user studies, to be effective, efficient,
comfortable, and satisfying. The solutions were also shown to be usable and useful for various
application scenarios. We have summarized the contributions of the solutions in Table 1 (we
pasted the table in the following for a better reading experience). Next, we reflect upon the
solutions based on the study results.
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Article I Article II Article III Article IV
Occluded Selection Gaze Support On-Body Support Intelligent Suggestion

En
v.

Small ✓ ✓ ✓ ✓
Distant ✓ ✓ ✓ ✓
Occluded ✓ ✓

Ta
sk

Effectiveness ✓ ✓ ✓
Efficiency ✓ ✓ ✓ ✓
Ergonomics ✓ ✓
Experience ✓ ✓ ✓ ✓
Expressivity ✓ ✓ ✓ ✓

8.1.1 Occlusion Visualizations
In Chapter 4, we introduced various occlusion visualizations, including, for example, techniques
that reorganize potential objects onto a grid for selection (i.e., GridWall, LassoGrid+, and
FlowerCone), techniques that leverage a depth cursor to control the appearance of the objects
(i.e., AlphaCursor and GravityZone+), and techniques that create a tiny replica of the virtual
world (MagicBall+). The techniques differed regarding their visualization types, disambiguation
mechanisms, and selectionmethods. The choices of techniques should depend on their intended
usage in the application and their usefulness under different interaction scenarios.
Based on our studies, we found that all methods were effective in interacting with small,
distant, and occluded targets. LassoGrid+, where users can select a group of candidates with a
lasso and narrow down to the target with a 2D grid, was shown to be the most efficient and
robust across multiple experimental conditions [25, 198]. These grid-based techniques were
seen as the easiest and less intrusive. One note is that these techniques completely shifted the
position of the objects, so they might not be suitable when maintaining the object location
information is essential [40].
GravityZone+, where all objects in the environment could move towards the user by controls,
and MagicBall+, where the remote selection was performed on a virtual world replica, could
preserve the relative and exact location information. GravityZone+ should be preferred if better
efficiency is needed, and MagicBall+ should be favored if the application focuses on providing
a pleasant user experience (since MagicBall+ was shown to have the highest hedonic quality
with UEQ-S [150]). One consideration when applying these techniques is that they may be
more sensitive to changes in environmental factors (e.g., depth of the target and density of
the target area). For example, the efficiency of GravityZone+ might decrease significantly if
the target was located at the far end of the depth dimension. Our design recommendations
presented in Chapter 4 are a useful guide for future designs of VR occluded target acquisition.
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8.1.2 Complementary Modalities
In Chapter 5 and 6, we investigated the incorporation of gaze and on-body surfaces as com-
plementary modalities to support the existing interaction workflow based on Virtual Hand
and Raycasting. In Chapter 5, we presented techniques that snap a remote object onto a user’s
hand for manipulation and techniques that leverage collaborative movements of gaze and
hand to translate and rotate a target. In general, we found that gaze could not offer signifi-
cant benefits in terms of efficiency in manipulating objects in front of the user and within
arm-reach distance but was helpful to handle distant objects in a larger environment [195].
When integrating gaze into real applications, it is essential to decide on the coordination and
transition strategy between gaze and hands. For example, an explicit transition that requires a
specific confirmation (e.g., a button click) to switch between the two modalities may be more
robust but demand extra workload in performing the switching command. On the other hand,
an implicit transition can enable smooth and concurrent transformations but will induce false
triggering of the functions because of classification errors.
In Chapter 6, we proposed six design patterns that treat on-body and mid-air surfaces as input
or output modalities for interaction. The design patterns inspired techniques that are capable
of handling a variety of selection and manipulation tasks, such as occluded target selection,
one degrees-of-freedom translation [108], and manipulations with adjustable CD ratio [48]
(i.e., tuning the hand movement speed to be more rapid or more precise). With the high-level
design concepts in our design patterns, on-body interfaces can assist mid-air interaction by
providing quick access to different tools through subtle thumb-on-finger gestures [59] and
achieving additional helpful, comfortable, and effective functions with finger-on-arm and
on-body displays [163]. Our study results also uncovered where to provide on-body input
and output to ensure better user experiences. For example, we found it beneficial to restrict
the thumb-on-finger touching areas to the first and second segments of the index and middle
fingers to satisfy general users while allowing customization to comply with individual needs.
One additional caveat when applying multiple modalities for input is that it increases the
complexity of the interaction and may induce a higher cognitive load on the users [74, 102].
Evidence from our studies indicates that users may have limited cognitive bandwidth in
performing simultaneous input in both modalities at the same time. For example, users were
found to perform on-body input after they finished the mid-air input (i.e., sequentially), even
though the interfaces allowed users to trigger the input altogether.

8.1.3 Predictive Models
In Chapter 7, we introduced a framework to optimize the support of target prediction models
by offering timely, intelligent suggestions. The target prediction models actively and implicitly
determine the likelihood of users interacting with an object over time. With the probability
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distribution, our framework presents the most likely target through highlighting or notifica-
tions at the optimal timing. The framework was demonstrated to speed up the interaction
and lower the interaction friction (i.e., reduce workload and enable seamless experience) [73].
Importantly, the framework can be extended for different optimization objectives and task
scenarios as long as a quantification method can be determined.
However, there are still a few challenges in applying intelligent suggestion techniques in
everyday scenarios. The most important challenge is that the target prediction models are not
powerful enough to provide accurate predictions, given the complexities and noises involved
in a daily interaction scenario. While we have seen target prediction models based on features
of hand reaching [28] and gaze searching [69] to produce accurate results, they are only
limited to a controlled experimental setting. With our optimization framework, we offer a
proof-of-concept that these models can assist users in an interaction task, which can inspire
predictive systems that are helpful to lower input friction and improve user experiences in
current VR systems.

8.1.4 Generalizability of the Findings
We illustrate howwe ensured internal and external validity through rigorous study and analysis
protocols. We also discuss the limitations of our studies.

§1 Internal Validity. We employed carefully-designed study procedures, as described in Chap-
ter 3 and detailed in the publications, to ensure the internal validity of our user studies. For
example, we mitigated the ordering effects through randomized or counterbalanced designs.
We also tried to minimize the variances in the data through multiple repetitive trials and re-
cruiting sufficient participants [22]. Further, we conducted rigorous statistical tests to analyze
our data. For instance, we did not fully rely on results from the significance tests to derive a
conclusion but also considered other measures such as effect size.

§2 External Validity. In our research, we struck a balance between concreteness and abstraction
when constructing an evaluation methodology to ensure the external validity of our work (i.e.,
the study results can be used for similar applications). First, when designing the controlled
experiments, we closely approximated the features in concrete 3D interaction tasks. For
example, in the intelligent suggestion study in Chapter 7, we used two types of tasks (dense
target selection and text matching) that closely mimic the settings of intended applications
which are manually intensive and mentally demanding [50, 167, 170].
Second, we assessed our techniques not only in the controlled experiments but also evaluated
them in real-world settings to ensure ecological validity. For instance, in the gaze-supported
manipulation study in Chapter 5, we proposed an interaction scenario that allowed users
to reconstruct an empty virtual room as in similar applications such as Mozilla Hubs and
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Minecraft VR. Users could move around the space and place their desired objects in an intended
location. The techniques were embedded into users’ own workflow and experiences.
Third, we validated our results in wide parameter ranges that may be contained in a real-world
application. For example, in the fully-occluded target selection study in Chapter 4, we varied
environmental factors that can influence user performance, including occurrence area, area
density, occlusion layer, and target depth to provide an in-depth comparison of the techniques
under different application scenarios.

§3 Limitations. While we attempted to ensure the validity of our results through rigorous
studies and analyses, we acknowledge several limitations of our research. First, results from a
limited number of studies may not provide a complete picture of the user experience, as they
only captured a snapshot in time (i.e., single-point measurements). Although we attempted to
vary different experiment settings, more replication or iterative studies are needed to further
determine the significance of the study results and make meaningful conclusions. Second,
while we tried to mimic the application scenarios, the studies were not conducted in the wild
(i.e., in a real-world environment). Additionally, we did not test the use of the techniques
longitudinally to explore the potential learning and adaptations in a longer-term scenario. To
further ensure the validity of the results, we should perform meta-analyses with the increase
of similar studies and conduct longitudinal, outside-of-lab studies in the future.

8.2 Advancing the Field with Multi-Objective Optimization
While numerous interaction techniques (including ours) have been developed, we now take
a step back by envisioning the possible future of VR selection and manipulation techniques
based on our current practices. We then present a framework for developing and determining
appropriate selection and manipulation techniques for different application scenarios so that
we can advance steadily towards our goals and apply the solutions more confidently.

8.2.1 Envisioning Future VR Selection and Manipulation
We believe that success measures are the main determinants of shaping future selection and
manipulation methods—they are treated as optimization objectives of our endeavors. Based on
our literature review and studies, our prediction is that the future solution should perform
reasonably well in the 5Es (effectiveness, efficiency, ergonomics, experience, and expressivity)
and other success measurements (robustness, realism, behavior, and consistency). However, we
should also note that the successful measurements may correlate or conflict with each other.
For example, our analysis of the literature has shown that performance measures (effectiveness
and efficiency) correlated with experience measures quite well; 76.9% of the proposed artifacts
outperformed the baselines in experience measures when they achieved better performance. In
other cases, researchers and designers might need to decide the tradeoff between the measures
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like speed vs. accuracy tradeoff [133] and flexibility (expressivity) vs. efficiency tradeoff [92].
Eventually, the future selection and manipulation method will have to pick a subset of success
measurements to optimize while trading off other objectives.
Another related inference about the future VR selection and manipulation methods is that
there will be a clear separation between generalized solutions, which aim to handle numerous
interaction scenarios, and specialized tools, which are dedicated to specific use cases [95, 191]
(i.e., the breadth/depth dichotomy [65]). For example, the primary interaction metaphors based
on Raycasting (or pointing in general) and Virtual Hand are unlikely to change significantly
because of the significant commercialization and their flexibility to be used in various inter-
action scenarios of selecting and manipulating properly-sized, unoccluded menus, buttons,
and objects. An implicit assistance from target prediction models can be applied to enhance
their usability when appropriate [61, 194]. More explicit enhancements like visualizations
and modalities [102, 154, 192], because of the added functionalities (and complexities), may
continue proliferation to provide solutions for more specific scenarios such as for dense [9, 193],
occluded [174, 198, 200], group-based [114, 162], and hands-free [94, 153] target selection and
manipulation.

8.2.2 An Optimization Framework
As discussed in the previous section, VR object selection and manipulation solutions may
only optimize a subset of the success measurements that are most useful for the intended
application because trade-offs can exist between different objectives. In this case, it is essential
to determine which techniques are the most ideal and how to develop the most appropriate
solutions for a given application to guide future research and designs. To achieve that, we
build a framework based on Pareto Frontier [118] for deciding the most suitable technique(s)
given multiple success measurements. Pareto Frontier contains a set of solutions that cannot
be better off in any targeted objective without making it worse off in another objective. The
main idea of our proposed framework is to first determine the desired success measurements
for a given application and then choose the Pareto optimal solutions (i.e., Pareto Frontier) for
the application. We illustrate the detailed process through an example.
Suppose we are looking for the best techniques for mid-range (around 1-5 meters) target
selection. We want to maximize its performance measures (i.e., efficiency and effectiveness).
We pick two papers [9, 96] as our knowledge base for choosing the desired technique(s).
In Lu et al.’s work [96], six techniques can be used for our purpose: Go-Go, Raycasting (i.e.,
Naive Ray in the paper), Heuristic Ray, Quad Cone, BubbleRay-E, and BubbleRay-A. From their
comparison study, we can infer that for efficiency: BubbleRay-A>BubbleRay-E, Heuristic Ray,
Quad Cone>Go-Go, Raycasting. For effectiveness: BubbleRay-A, BubbleRay-E, Quad Cone>Go-
Go,Heuristic Ray, Raycasting. Similarly, we derive the following relationships based on the study
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Fig. 9. Tomaximize performancemeasures (i.e., efficiency and effectiveness), we placed all the candidate
techniques onto a 2D plot with efficiency as the x-axis and effectiveness as the y-axis. We can compute
Pareto Frontier to determine the most optimal solution (i.e., BubbleRay-A in this case). The secondary,
tertiary, and quaternary choices can also be concluded.

in Baloup et al. [9]. For efficiency: Raycasting, Semi-Auto RayCursor>Manual RayCursor>Ro et
al. 2017. For effectiveness: Semi-Auto RayCursor>Manual RayCursor, Raycasting>Ro et al. 2017.
Based on the above relationships, we can place the techniques from the two papers onto an
efficiency and effectiveness scale by using the common technique of Raycasting as the anchor
(see Figure 9 left). In both scales, the higher the tiers, the better the techniques perform on that
scale. Note that we should be cautious about combining results from different papers, as the
experimental environments differed. To demonstrate the optimization framework, we assume
these conclusions are generalizable.
Since we want to optimize two objectives, we can place all the candidate techniques onto
a 2D plot with efficiency as the x-axis and effectiveness as the y-axis (see Figure 9 middle).
Following the definition of Pareto Frontier, where we identify the solution(s) that either one of
the dimensions could not be improved without worsening the other dimension, we conclude
that BubbleRay-A should be our primary choice. A similar procedure can be followed to
determine the secondary options (i.e., Quad Cone) by excluding the primary choices, also for
tertiary and quaternary options.
The demonstrated framework can be easily extended for future use cases. For example, we can
consider higher dimensions with more optimization objectives (e.g., four objectives including
efficiency, effectiveness, experience, and robustness) if we have enough data support from
previous empirical studies. Eyeballing the solutions might be difficult in higher dimensions,
but the solutions can be computed programmatically. Furthermore, the optimization objectives
do not need to be restricted to the nine success measurements categorized in this research, but
with more detailed separations (e.g., fun vs. perceived ease-of-use).

99



Chapter 8 - DISCUSSION

The framework can not only help practitioners decide which techniques to choose given a set of
optimization objectives but also guide the future development of VR selection andmanipulation
solutions. The framework indicates that we should aim to develop solutions locate at the Pareto
Frontier of different combinations of objectives. It also suggests that we should conduct studies
to verify the “tiers” of solutions, maybe with multiple studies to evaluate the generalizability
of the conclusions in a given interaction scenario. In addition, future research should try to
compare a newly proposed solution to common baselines (e.g., Virtual Hand or Raycasting) or
the state-of-the-art to position it in the landscape of the techniques in the literature.

8.3 Future Research Directions
We have mentioned a few research directions in the thesis. In our literature review (Chapter 2),
we identified small but emerging topics in the field, such as coping with the limitations in a
user’s physical space, integrating the selection and manipulation tasks into broad contexts
and workflows, and enabling collaborative manipulation. Furthermore, through our research
studies (Chapter 4, 5, 6, and 7), we identified that occlusion visualizations, multi-modality
interaction, and predictive model integration were promising ways to enhance Virtual Hand
and Raycasting and may require future research to mature the interactions. In this section, we
emphasize several other research areas that we see as essential.

8.3.1 Proposal of Theories that can Explain
Recent discussions in HCI, in general, have been putting substantial attention on theory
building (e.g., [67, 93, 122, 123]). A recent survey on selection and manipulation by Bergström
et al. also highlighted the importance of evidence accumulation for theory building [13]. While
we have seen a few papers on empirical models that can predict user selection behavior [194]
or intended target of interest [61], these models are mainly descriptive—they do not provide a
sense of understanding about the causes of the predicted event. Since being able to explain the
causal mechanism is indispensable for a scientific theory [141], we should aim to build theories
that can provide understanding regarding the underlying cognitive and motor mechanisms of
VR object selection and manipulation.

8.3.2 User Behavior in Moving Target Acquisition
Selecting moving targets is commonplace in VR games and social platforms. In popular VR
games such as Beat Saber, Fruit Ninja, and Robot Recall, players must often aim, catch, or grab
flying targets (like fruit or bullets). One interesting direction is to model user behavior in such
moving target acquisition tasks. With a generalizable user model for moving target acquisition,
a game designer can better predict how users will behave when adjusting the parameters to
unseen conditions without costly user tests (i.e., enabling automated playtesting [196]). A user
may also better handle challenging game scenes or complex interaction scenarios that contain
moving target selection (e.g., selecting a datapoint in VR traffic flow visualizations [26, 181]).
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Additionally, understanding user general selection behavior regardless of static or moving
targets may provoke relevant theories on target selection.

8.3.3 Study Generalizability and User Simulation
Good generalizability allows research findings to remain valid across relevant application
scenarios. One issue that we have constantly been reflecting upon during the development
of this thesis is to improve the study methodology to ensure the generalizability of the study
findings to be reusable for other applications. The challenge here is that user studies are
normally costly, and only a limited number and levels of variables can be included in one study.
User fatigue and disengagement may also affect the validity of user data. One interesting future
direction is to simulate users with an AI agent. For example, Ikkala et al. [70] applied bio-
mechanical and perception models with reinforcement learning to reproduce user behaviors
in simple tasks like pointing and object tracking. We deem this a promising future research
direction as various experimental conditions and application scenarios may be easily simulated
in computers to evaluate a newly proposed interaction technique.

8.3.4 Measuring Accessibility
In addition to the success measurements discussed in this thesis, it would be helpful to add the
measure of accessibility to expand access to VR selection and manipulation techniques. There is
a significant number of people who suffer from disabilities worldwide [116, 120]. Furthermore,
every user could experience situational impairments depending on their situations, contexts,
and environments (e.g., a user may not be able to use their arms for interaction while lifting
heavy goods) [146, 151, 186]. It is thus essential to consider how to adjust the proposed methods
to support people with (situational) disabilities such as visual [201] or motor [117] impairments
to accomplish selection and manipulation tasks in VR.
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CONCLUSION

Object selection and manipulation are the foundation of VR interactions—users perform
selections to identify target(s) of interest and execute manipulations to transform the target into
a desired configuration (i.e., location, rotation, and scale). Existing VR systems primarily rely
on Virtual Hand and Raycasting which are imprecise, inefficient, and cumbersome, especially
in complex scenarios that contain small, distant, and occluded targets.
In this thesis, we have presented a set of solutions to enhance Virtual Hand and Raycasting for
object selection and manipulation in complex VR interaction scenarios. Occlusion visualization
techniques help reveal fully-occluded targets and empower efficient disambiguation for target
acquisition. Complementary modalities, including gaze and on-body surfaces, can enable
access to various helpful functionalities and shortcuts that are indispensable for complex VR
interactions. Predictive models, which actively infer a user’s intention in the background, can
provide prompt intelligent suggestions to improve user performance and experience.
The results from a series of user studies have demonstrated that our solutions can help handle
small, distant, and occluded targets and are effective, efficient, comfortable, and satisfying in
different application scenarios. Moreover, our design space, framework, and design recommen-
dations can guide researchers and designers to effortlessly adapt the solutions to a multitude
of VR interaction experiences.
In this thesis, we have also anticipated future VR selection and manipulation techniques and
proposed a framework for developing and determining appropriate selection and manipulation
techniques for different applications with multiple design objectives. Additionally, we have
outlined future directions regarding explainable theories, moving target acquisition, user
simulation, and technique accessibility. Finally, we envision the technical solutions and findings
presented in this thesis inspire more usable and useful 3D user interfaces in VR systems.
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