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Figure 1: An overview of the intelligent suggestion timing problem. While a user is attempting to select an icon in virtual 
reality, a target prediction model could be continuously estimating the likelihood that the user will select each icon (e.g., at 
timestamp tx and ty ). Depending on the results of these estimations, a system could then display an intelligent suggestion to 
the user that highlights the most probable icon for them to select. This suggestion, for example, could enable them to select 
an icon using a simple click, so that the user does not need to manually point towards the icon. While such suggestions could 
improve the usability of intelligent user interfaces, it is currently unknown whether early suggestions, which could save the 
user time and efort but may be less accurate, or later suggestions, which could save less time and efort but may be more 
accurate, are more benefcial for users. 

ABSTRACT 
Intelligent suggestion techniques can enable low-friction selection-
based input within virtual or augmented reality (VR/AR) systems. 
Such techniques leverage probability estimates from a target pre-
diction model to provide users with an easy-to-use method to select 
the most probable target in an environment. For example, a system 
could highlight the predicted target and enable a user to select it 
with a simple click. However, as the probability estimates can be 
made at any time, it is unclear when an intelligent suggestion should 
be presented. Earlier suggestions could save a user time and efort 
but be less accurate. Later suggestions, on the other hand, could 
be more accurate but save less time and efort. This paper thus 
proposes a computational framework that can be used to determine 
the optimal timing of intelligent suggestions based on user-centric 
costs and benefts. A series of studies demonstrated the value of the 
framework for minimizing task completion time and maximizing 
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suggestion usage and showed that it was both theoretically and em-

pirically efective at determining the optimal timing for intelligent 
suggestions. 
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1 INTRODUCTION 
Target selection in virtual and augmented reality (VR/AR) systems 
is difcult, especially when interaction scenarios are complex (e.g., 
with small, faraway, cluttered objects) and input techniques are 
cumbersome to use (e.g., mid-air hand pointing). Recent research 
has utilized statistical or machine learning models to estimate the 
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likelihood of a user selecting diferent items or objects of inter-
est [20, 25, 65]. Based on the estimated probabilities computed by 
these models, an interaction system may then use visual highlight-
ing or display a notifcation to draw the user’s attention towards the 
most probable target. Next, a user may select the predicted target 
with a shortcut (such as a simple click) [1, 30, 70]. Such techniques 
can alleviate the need to manually point at targets or conduct a 
full visual search of an environment, potentially leading to quicker, 
easier, and more comfortable interactions. They can also be use-
ful within VR/AR systems that employ noisy, high-friction input 
modalities [1, 22, 70] or support scenarios that require users to 
complete manually-intensive or mental-demanding tasks, such as 
selecting objects in a cluttered environment or navigating through 
a complex hierarchical menu [17, 25, 38, 71]. 

While current target prediction models can determine which 
target a user may select, they cannot determine when intelligent 
suggestions should be provided to users. While an earlier suggestion 
could save a user time and efort, such suggestions have a higher 
chance of being incorrect, which could cause users frustration, 
break their trust, or decrease their performance [12, 40]. On the 
other hand, later suggestions are likely to be more accurate but less 
benefcial because users have already spent ample time and efort to 
complete their task. By the time a model has accumulated enough 
evidence to be certain of a user’s intended target, the user may have 
almost completed their action, thus rendering the late-breaking 
intelligent suggestion useless or disruptive (refer to Figure 1 for a 
problem overview). 

Despite this important nuance, existing target prediction models 
have not scrutinized when to ofer a suggestion and instead used 
a heuristically proposed probability threshold. For example, prior 
work on forecasting which target a user might reach towards with 
their hands used a threshold of 85% because the model seemed ac-
curate enough at that point based on their evaluation of the model 
confdence value over time [20]. In contrast, Huang et al. used a 
threshold of 43% when predicting which sandwich ingredient a user 
might choose via gazing [36]. They used this threshold because it 
was based on the average model confdence value for a correct pre-
diction. The mixture of design intuitions and model performance 
observations used in this prior work may not lead to optimal sug-
gestion timings—one may wonder if a better threshold could be 
chosen. Furthermore, this prior research did not consider the user-
centric costs and benefts of intelligent suggestions (e.g., the exact 
time saved by a suggestion). Thus, this research introduces the 
COBO (cost-beneft optimization) framework, which determines 
the optimal timing of intelligent suggestions by considering user-
centric costs and benefts. Specifcally, COBO uses the probability 
estimates computed by a target prediction model over time as input 
and quantifes the cost and beneft of a suggestion to produce a fnal 
gain function. The obtained gain function then enables the determi-

nation of the most benefcial timing for suggestions either through 
optimization of this function or through designer’s intuition. 

To study how users would respond to an intelligent suggestion 
displayed at diferent timings, a dense target selection task and a 
text matching task were implemented in VR. VR was chosen as the 
testbed because VR input techniques such as mid-air pointing are 
efortful and are likely to beneft from intelligent suggestions. Based 
on the study results, cost and beneft functions were developed and 

simulations were run under two optimization strategies – Optimal 
Thresholding and Reinforcement Learning – to minimize user task 
completion time and maximize intelligent suggestion usage. The 
efcacy of these strategies was then verifed in two validation ex-
periments, which showed that COBO was helpful for determining 
the optimal timing of intelligent suggestions both theoretically and 
empirically. 

The primary contributions of this research are: 

• A framework (i.e., COBO) to optimize the timing of intel-
ligent suggestions through a computational approach that 
considers user-centric costs and benefts. 

• Study outcomes that demonstrate the efectiveness of COBO 
for intelligent suggestion timing optimization on two objec-
tives: minimizing user task completion time and maximizing 
intelligent suggestion usage. 

2 BACKGROUND AND RELATED WORK 
This research was informed by facilitation techniques that aim to 
improve user performance and save user eforts in object selection 
tasks. It also took inspiration from works that applied probabilis-
tic models to estimate user-intended target(s) and research that 
leveraged Reinforcement Learning for objective optimization in 
interactive applications. 

2.1 Selection Facilitation Techniques 
Selection facilitation techniques have been used as a method to 
improve interaction since the introduction of early graphical user 
interfaces. While numerous techniques have been proposed, the 
majority decrease the movement distance required to reach a target 
and/or increase the efective size of the target [28]. To shorten the 
movement distance, techniques may snap the cursor to the target 
(e.g., [10, 73]). To increase the target size, techniques may expand the 
target [44] or resize the cursor [28, 46]. A visual indicator (e.g., visual 
highlighting) may also provide feedback when a technique has 
selected a candidate object. The user can then use an explicit action 
(e.g., a button press) to confrm that the object that is currently 
selected is the one they desired to select. 

Selection facilitation techniques have also been explored in 
VR/AR scenarios (see surveys such as [6, 42]). For example, Schjer-
lund et al. applied multiple virtual hands to shorten the selection 
distance [60] and Baloup et al. compared various raycasting-based 
methods that enlarged the objects’ efective size in VR [11]. Selec-
tion facilitation techniques have been applied to VR/AR systems be-
cause mid-air pointing, which is a commonly used input modality in 
these systems for 3D input, can be inefcient and imprecise [7, 70]. 

More relevant to the present research are selection techniques 
that predict user-intended targets [1, 70]. In addition to decreas-
ing target distances and increasing target sizes, prediction-based 
methods have also been found to reduce search time [15]. While a 
user may have trouble fnding the intended target in more complex 
environments (e.g., those with lots of visual clutter), an intelligent 
suggestion can present a potential target to users, thus minimizing 
the time spent searching and manually pointing. We describe these 
techniques in the next section. 
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2.2 Target Prediction 
Users’ intended selection targets can be sensed through behavioral 
cues, such as body and eye movements. Much existing research 
focuses on building models that appropriate gaze traces or scan-
paths to predict selection intentions [21, 37, 39, 59, 61, 72]. For 
example, Borji et al. [15] built models that predicted search targets 
based on gaze fxations on a large random-dot array. Their model-

ing rationale was that attention and gaze are guided toward visual 
features that are similar to a search target. Using this approach, 
they demonstrated that their models outperformed a random base-
line, especially when a larger number of fxations was considered. 
Huang et al. [36] used a support vector machine model to pre-
dict a customer’s intended target in a sandwich-making scenario 
and made correct estimations approximately 1.8 seconds before a 
customer’s spoken request. Sattar et al. [58] proposed a model to 
predict the categories and attributes of user intended objects from 
gaze data, which were then used to reconstruct plausible targets. 
Researchers have also explored target forecasting in VR (e.g., [35]), 
with some taking advantage of gaze fxations to anticipate users’ 
hand movements while reaching for objects [19, 26]. 

Hand and input device trajectories have also been used in selec-
tion tasks to infer user-intended targets [13, 14, 47, 74]. For exam-

ple, Ahmad et al. [1–4] investigated probabilistic intent prediction 
approaches for in-vehicle touchscreen input based on pointing ges-
tures. Yu et al. [70] examined the selection distribution of VR input 
controllers and used this information to predict the likelihood of a 
user selecting a candidate object. Clarence et al. [20] used long short-
term memory (LSTM) models to predict the probability of selecting 
candidate objects using hand-reach features such as position and 
orientation. Researchers have also predicted future cursor positions 
in target-agnostic manners (e.g., [10, 30–32, 41, 43, 51, 68]). 

In addition to user behaviour, models can also make use of users’ 
preceding actions or contextual information to infer their next se-
lection intent [27, 66, 67]. For instance, Goodman et al. [27] applied 
a language model for text entry to estimate the most likely selected 
key based on an entered sequence and the current input distribution. 
White et al. [67] leveraged interaction contexts such as previous 
search queries and clicks to predict users’ short-term interests. 

Although target prediction models can be efective at determin-

ing which object a user intends to select previous work has not 
examined when intelligent suggestion should be enabled to maxi-

mize its benefts. Some researchers have used design intuitions to 
trade-of between successful early predictions and the possibility 
of introducing false positives [1, 20, 36]. Others chose to always 
display a predicted target (e.g., typing predictions). However, in-
tuitions may not lead to optimized performance and always-on, 
constantly changing suggestions during cursor navigation or visual 
search might lead to user costs that were not anticipated, especially 
in VR/AR scenarios where screen space is limited and distraction 
may be costlier. As such, our research introduces a method for 
optimizing the timing of intelligent suggestions that was designed 
to be extensible to any of these aforementioned prediction models. 

2.3 Reinforcement Learning 
Recently, reinforcement learning (RL) has been used in the devel-
opment of adaptive user interfaces [25, 62] and human behavior 

simulations [18, 33]. In a typical training setting, an RL agent in-
teracts with its environment using a set of actions and receives 
corresponding feedback (i.e., rewards or penalties) to help it learn 
from the environment [8]. Through this trial-and-error process, 
the agent can discover an action policy that leads to a maximized 
reward. Such a learning paradigm may be particularly suitable for 
interactive settings that incorporate human-in-the-loop [9]. 

HCI researchers have applied both model-based and model-free 
RL for interface optimization. For example, Todi et al. [62] leveraged 
model-based RL that utilized predictive HCI models to estimate 
a potential reward of an agent’s action. Their model-based agent 
learned to adapt menu interfaces through order changing or group-
ing to improve user performance. In contrast, Gebhardt et al. [25] 
applied model-free RL to support users in a visual search task by 
showing and hiding object labels (e.g., price tags). Their RL agent 
observed user behavior (i.e., gaze trajectories) and received rewards 
or penalties depending on whether a label was shown when the 
user’s gaze point was fxated on the object. Compared to model-

based approaches, the model-free agent did not make predictions 
about the next state and reward before it took an action. 

The present work employs model-free RL to discover an optimal 
policy of suggestion timing. Model-free RL was chosen because it 
does not require a transition dynamics model to derive a useful pol-
icy. The reward function integrated user-centric costs and benefts 
in terms of, for example, the exact time saved in seconds. 

3 RESEARCH OVERVIEW 
Our framework relies on quantifying user-centric costs and benefts 
of a suggestion over time (e.g, the exact time saved by a suggestion) 
to produce a fnal gain function for optimal suggestion timing de-
termination. In the following sections, we introduce our framework 
and present three studies that aimed to demonstrate and validate 
the proposed framework. 

The frst is a user study to collect data to approximate the cost and 
beneft functions related to two optimization objectives (i.e., time 
saved and suggestion usage percentage) in a manually-intensive 
task and a mentally-demanding task. This is essential to complete 
the cost and beneft quantifcation step in the framework. 

The second is a simulation study where simulations were run 
with two optimization strategies (Optimal Thresholding and Rein-
forcement Learning) for single- and multi-objective optimization. 
These simulations aimed to optimize the gain functions related to 
the objectives and theoretically evaluate the optimization strategies. 

In the third study, the optimization fndings were empirically 
validated by running user studies that compared the optimal timing 
of intelligent suggestions produced by our framework against two 
baselines—heuristic-based thresholding and no suggestion. The 
baselines help contextualize the impact of our solution relative to a 
literature baseline and interfaces that ofer no suggestions. 

4 COBO FRAMEWORK 
COBO (cost-beneft optimization) is a framework to optimize when 
to display intelligent suggestions by considering the costs and ben-
efts that an intelligent suggestion may provide to the user (e.g., 
the exact time saved) given specifc timing and model probabilities. 
More precisely, COBO takes input probability estimations from a 
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target prediction model and user-centric costs and benefts of a 
suggestion over time to form a fnal gain function. The optimized 
suggestion timing is then determined by fnding the maximum gain 
on this gain function curve (Figure 2). To apply the COBO frame-

work, three components are needed: a target prediction model, a 
method for cost and beneft quantifcation, and a strategy for gain 
function optimization. 

4.1 Target Prediction Model 
Target prediction models are probabilistic models that infer a user’s 
intended target of interest. A model typically produces a probability 

k
distribution {p } among N potential candidates, which indicates t 
the likelihood of a user selecting each candidate k ∈ K = {1, ..., N }
at timestamp t (Figure 2 left). It may then output the most likely 
target and its corresponding probability value qt (also called the 
model confdence). In the model, timestamp t ∈ {1, ...,T }, where 
T is the total number of timestamps that the model produces es-
timations since the onset of the selection until the user manually 
selects a target. In the present work, the target prediction models 
produce output at a constant frequency f . Therefore, timestamp t 
can be converted to time in seconds ts using ts = t/f . 

The target prediction models can be trained using data col-
lected from various information channels (e.g., user hand move-

ment [1, 20], eye gaze information [21, 36], prior selection infor-
mation [27], etc.). While the output of the target prediction model 
(i.e., probability estimates over time) is used as input to the COBO 
framework, the model itself is not a part of the framework. For sim-

plicity, this research only displays intelligent suggestions for the 
most probable object. Thus, only the model confdence qt is used 
as input to the COBO framework rather than the whole probability 
distribution. It is also assumed that model confdence is a reasonable 
approximation of the ground truth prediction accuracy [29, 49]. 

4.2 Cost and Beneft Quantifcation 
COBO requires a quantifcation of the user-centric costs and ben-
efts of displaying an intelligent suggestion over time based on 
the optimization objective. For example, if the objective is to mini-

mize user task completion time, the cost and beneft quantifcation 
can use an estimation on how long it takes users to respond to 
suggestions, how much time a correct suggestion may save, and 
how much of a time delay an incorrect suggestion may cause. Such 
quantifcation can be specifed from the results of empirical user 
studies or through literature-informed assumptions. The obtained 
cost function Cost(t) and beneft function Benefit(t) can then be 
used to build a fnal gain function. 

The total gain of displaying an intelligent suggestion for the most 
probable object at a particular timestamp t is shown in Equation 1. 
The gain function is equivalent to the beneft obtained, multiplied 
by the probability that the predicted object is the true target minus 
the cost, multiplied by the probability of the object not being the 
real target. 

Gain(t) = Benefit(t) · qt − Cost(t) · (1 − qt ) (1) 

When applying the COBO framework, the gain objective can 
vary in diferent applications according to a designer’s needs (e.g., 

minimizing completion time, minimizing induced errors, maximiz-

ing user satisfaction, etc.). This research demonstrates the optimiza-

tion of two gain objectives, i.e., the time saved by users and the 
suggestion usage percentage. 

4.2.1 Time Saved by Users. Task completion time is an obvious 
metric of user task performance. Ideally, an efective user inter-
face shortens task completion time, while maintaining accuracy 
to increase user efciency. To maximize time savings for users, 
the following three variables were considered when displaying an 
intelligent suggestion at timestamp t : 

• Response time RT(t): the time elapsed between the frst ap-
pearance of a correct suggestion and the time when the user 
applies the suggestion (e.g., through a simple click). 

• Response rate RR(t): the overall user response rate to a cor-
rect suggestion. 

• Delayed time DT(t): the average time delay caused by dis-
playing an incorrect suggestion. 

For simplicity, we assume that there are minimal efects of i) the 
delayed time of a correct suggestion if a user does not apply it and 
ii) the response time of an incorrect suggestion if a user assumes it 
is correct. 

For a given trial with total timestamps T , the potential beneft 
of displaying a suggestion at t is represented in Equation 2. The 
equation can be interpreted as the estimated timestamps saved if a 
correct suggestion is given at t , multiplied by their rate of response. 
The max function ensures the beneft value is no smaller than 0. 

Benefit(t) = max(0,T − (t + RT(t))) · RR(t) (2) 

The potential cost is the time delay caused by an incorrect pre-
diction (Equation 3). 

Cost(t) = DT(t) (3) 

Inserting Equation 2 and 3 into Equation 1, results in an esti-
mated gain function that considers the timestamps saved for users 
(Equation 4). It can be converted to the time saved in seconds by 
dividing it by the model output frequency f . 

Gain(t) = max(0,T − (t + RT(t))) · RR(t) · qt − DT(t) · (1 − qt ) (4) 

4.2.2 Suggestion Usage Percentage. Although time savings is a use-
ful objective for performance improvement, it may not necessarily 
be valuable to the user experience. For example, previous work 
has shown that even when word prediction may impair average 
text entry speeds on mobile devices, users still prefer to use them 
[50, 54]. As such, we also sought to optimize for intelligent sugges-
tion usage percentage. It was assumed that as long as a user applies 
an intelligent suggestion, it leads to a preferred user experience. 

Based on this, the gain function can be written as Equation 5. 
The beneft function is approximated by the likelihood of users 
responding to a correct suggestion. For simplicity, the probability 
of users applying an incorrect suggestion is ignored so the cost 
function is omitted. 

Gain(t) = RR(t) · qt (5) 

4.3 Gain Optimization 
The value of the gain function Gain(t) changes over time such that 
the model confdence value qt , the user-centric cost Cost(t), and 
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Figure 2: An overview of the COBO framework. COBO uses the probability estimates of a target prediction model as input and 
quantifes the cost and beneft of the suggestion over time to produce a fnal gain function. The gain function is computed 
using the beneft of displaying a suggestion minus its cost across the time axis. By applying an optimization strategy, the 
framework determines when displaying a suggestion will be useful (gain > 0) and when the gain value (max(gain)) will be 
maximized. 

beneft Benefit(t) will be diferent as the task progresses and t 
increases. In real applications, the target selection model does not 
infer when a user starts the task (t = 0) or when the user fnishes the 
task, so the task progress is unknown to the prediction model. One 
solution is thus to infer t from the the real-time model confdence 
value of the target prediction model qt because the model tends to 
become more confdent in its predictions as the user reaches the 
end of their task. Several prior studies have indicated that the rela-
tionship between t and qt may follow a sigmoid function [20, 36], 
thus the implicit relationship between t and qt can be modelled as 
t = д(qt ). By doing this, the fnal objective function (Equation 6) 
only depends on the real-time confdence output qt . The objective 
function returns the qt that leads to the maximum gain. The re-
turned qt can be directly applied to determine a suggestion timing. 
For example, if the optimized qt = 0.6, the system should display 
an intelligent suggestion when the model confdence reaches 0.6. 

argmax [Benefit(д(qt )) · qt − Cost(д(qt )) · (1 − qt )] (6) 
qt ∈[0,1] 

In practice, we obtain the mapping function t = д(qt ) from a 
training dataset Dtr ain . The purpose of Dtrain is to provide known 
relationship between t and qt so that an optimization strategy 
can learn how to handle new real-time qt values. In this work, 
we created a dataset, Dtrain , wherein each data trial consisted of 
known qt values for all t ∈ {1, ...,T }. Such a dataset can also be 
generated by using a trained prediction model to produce qt for 
each t ∈ {1, ...,T } of the feature data (e.g., hand movement [20] 
or gaze information [36] over time). Once Dtr ain and the cost 
and beneft functions are available, an optimization strategy can 
calculate the expected gain by simulating the efect of enabling 
intelligent suggestions at diferent qt (which correspond to a known 
t ) on the trials in Dtr ain , to consequently compute an optimal 
solution over the training set. With the hypothesis that the training 
data is a reasonable approximation of the unseen testing data, the 
optimized solution can be generalized to real applications. 

Since the objective is to fnd a qt or a set of qt s that can lead to 
the maximum gain, various optimization methods can be applied 

to solve this problem. In this work, two optimization strategies (i.e., 
Optimal Thresholding and Reinforcement Learning) were explored. 

4.3.1 Optimal Thresholding (OT). The Optimal Thresholding strat-
egy aimed to obtain a single optimized model confdence threshold 
that worked best on Dtrain . To achieve this aim, diferent conf-
dence values qt ∈ [0, 1] were tested and the qt that lead to the 
highest expected gain on Dtr ain was selected. 

4.3.2 Reinforcement Learning (RL). Rather than relying on a single 
threshold for all trials, RL-based optimization strategies can pro-
vide “dynamic thresholds” based on the profle of each trial (e.g., 
the speed of increase of the model confdence value). This has the 
potential to further boost the optimization performance compared 
to Optimal Thresholding. Therefore, RL was applied to derive opti-
mal policies for intelligent suggestions that could reach the highest 
gain on Dtr ain . Specifcally, our RL agents observed the incoming 
probability estimations and explored diferent action sequences 
(i.e., displayed an intelligent suggestion or not) to ultimately fnd 
optimal action sequences that would lead to the maximum gain. 
Additional details about the RL agents are in Section 6.3. 

5 STUDY 1 - DATA COLLECTION 
The primary goal of the frst study was to quantify the cost and 
beneft of the two optimization objectives. To this end, data was 
collected from participants while they responded to an intelligent 
suggestion displayed at diferent timings. Specifcally, this study 
focused on how much time it took participants to respond to a 
correct suggestion, the usage percentage of the correct suggestion 
over time, and the trial completion delay incurred by an incor-
rect suggestion. Two diferent task scenarios (manually-intensive 
vs. mentally-demanding) and two diferent suggestion types (vi-
sual highlighting versus pop-up notifcation) were used to explore 
whether these factors would lead to diferent participant responses. 
We tested these factors because they could be the main determi-

nants of user behavior towards an intelligent suggestion. 
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Figure 3: Screenshots of the dense target selection task (left) 
and the text matching task (right). 

We used a two-session data collection study methodology. In the 
frst session, baseline user performance (e.g., task completion time) 
was collected while participants performed a dense target selection 
task and a text matching task. The baseline user performance was 
used to inform the suggestion timing interval for the second session. 
In the second session, correct and incorrect suggestions within 
the earlier determined timing intervals were displayed and the 
resulting participant behavioral data were recorded. This enabled 
the measurement of the costs and benefts of the suggestion. 

We here prioritize high-level concepts and more relevant con-
tents in our presentation. We refer readers to Appendix A for more 
detailed descriptions of the task scenarios and suggestion methods 
and the signifcance testing results. 

5.1 Participants and Apparatus 
Sixteen participants (6 women and 10 men) were recruited and 
provided informed consent on attending the study. Participant ages 
ranged from 23 to 47 (mean = 36.6, std = 7.7, one participant did 
not report their age). All participants had normal or corrected-to-
normal vision and all were right-handed. Twelve participants had 
used VR devices for 0-5 hours per week, three used them for 5-10 
hours, and one had never used a VR device before. As participation 
was remote, participants received equipment to use in the study by 
mail (i.e., an Oculus Quest 2, two Touch controllers, and a laptop 
with an GTX 1070 graphics card) and met with the researchers 
during a video call to complete the study. 

5.2 Task Scenarios 
Two task scenarios, representative of common interaction tasks that 
are efortful to perform, were employed (see Figure 3). The dense 
target selection task represented a manually-intensive task, where 
participants needed to select a small object located at the center 
of a cluster [46, 64]. The text matching task served as a mentally-

demanding task, where participants needed to fnd and select an 
object with text that matched a target text. This task simulated 
real-world, search-heavy scenarios like searching for ingredients 
from a receipt, fnding street names on a map, or browsing through 
a menu [52]. 

5.3 Suggestion Method 
Two suggestion methods were used in the study—a highlighting 
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fuorescent outline was displayed around the 
suggested object (Figure 4 left). The highlighting suggestion was 
in-situ, so it remained at the object location without following the 

Figure 4: Highlighting notifcation (left) and pop-up sugges-
tion (right) used in the dense target selection task. 

direction participants were looking. With the pop-up notifcation 
suggestion, a suggestion window appeared at the bottom of the 
participant’s current viewing direction (Figure 4 right) [57]. When 
participants rotated their viewing direction, the pop-up notifcation 
followed the viewing direction. For both suggestions, participants 
could quickly access the suggested object via the Button A or dis-
card the suggestion by tilting the joystick to the right. 

5.4 Study Design 
The study included two sessions. The frst session used a within-
subject design with one factor, Task Type (dense target selection 
and text matching), to collect baseline user performance. Each task 
had 48 trials, with the frst 3 trials being discarded as practice trials. 
The order of Task Type was counterbalanced. In total, 1440 trials 
were recorded (= 16 participants × 2 task types × 45 repetitions). 

The second session was conducted on a later day with the same 
pool of participants after they had all fnished the frst session. It 
also used a within-subject design but had three factors: Task Type 
(dense target selection and text matching), Suggestion Method 
(highlighting and pop-up notifcation), and Suggestion Mode (cor-
rect, incorrect, and no suggestion). A suggestion, if there was one, 
was generated within a specifc timing interval ([0s, 3.1s] for the 
dense target selection task and [0s, 7.6s] for the text matching task). 
The suggestion timing was then randomly sampled within this in-
terval in each task to help us better understand how users respond 
to suggestions over time. The mean task completion time from the 
frst session was used as the maximum suggestion timing for the 
second session, as users normally fnish the task manually before 
these upper-bound times. The order of Task Type and Sugges-
tion Method were counterbalanced, and the order of Suggestion 
Mode was randomized within each block. When a participant was 
working on a certain task type with a suggestion method, a sugges-
tion may or may not appear and could be correct or incorrect. In 
Session 2, each condition was repeated 32 times (2 practice trials). 
In total, 5760 trials were recorded (= 16 participants × 2 task types 
× 2 suggestion methods × 3 suggestion modes × 30 repetitions). 

5.5 Study Procedure 
The same procedure was used for both sessions of the study. Each 
session started by introducing the two experimental tasks and sug-
gestion methods (only for session 2). In session 1, participants then 
practiced the two tasks. In session 2, they practiced the scenarios 
with and without the two suggestion types in each task. The sug-
gestion timing was shortened to 1/3 of the original intervals during 
practice to ensure they saw a suggestion. They then started the 
experiment where they were asked to complete each task as fast and 
as accurately as possible, and were encouraged to use intelligent 
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suggestions if they were correct. They were given breaks between 
blocks. After session 2, they completed a post-study questionnaire. 

5.6 Results - Session 1 
Before the baseline task completion time was computed, the data 
was pre-processed to remove outliers that deviated more than three 
standard deviations from the mean (mean ± 3std). This lead to 9 
trials (1.25%) being discarded for the dense target selection task and 
19 trials (2.64%) being discarded for the text matching task. A total 
of 711 trails and 701 trials were left for analysis, respectively. 

The completion times for both tasks followed log-normal distri-
butions. Using the maximum-likelihood estimation, the calculated 
distribution parameters were µ = 1.13, σ = 0.25 for the dense 
target selection task and µ = 1.88, σ = 0.60 for the text matching 
task. Participants took an average of 3.21 seconds (std = 0.86) to 
complete the dense target selection task and an average of 7.77 
seconds (std = 4.6) to complete the text matching task. The overall 
accuracies were 94.09% and 100%, respectively. 

5.7 Results - Session 2 
Pre-processing the session 2 data involved frst discarding trials 
where participants completed the task before an intelligent sug-
gestion was displayed (i.e., 222 (7.71%) dense target selection trials 
and 447 (15.52%) text matching tasks). Additionally, trials outside 
mean ± 3std , were also removed (i.e., 30 (1.04%) dense target selec-
tion trials and 40 (1.39%) text matching trials). This left 2628 trials 
and 2393 trials, respectively, for each task for analysis. The overall 
accuracy for the dense target selection task was 95.09% and 99.28% 
for the text matching task. 

5.7.1 Response Time. Response time was defned the time elapsed 
between the appearance of a correct intelligent suggestion and 
a participant’s selection of that suggestion. We used multivari-

ate adaptive regression splines (MARS) to model the relationships 
between suggestion timing and response time. MARS was used be-
cause it tries to fnd multiple linear regression lines to ft data while 
balancing goodness-of-ft and simplicity. The linear regression lines 
were connected through hinge functions (h(x − c) = max(0, x − c)
or h(c − x) = max(0, c − x) where c was a constant called knot) 
to provide non-linear approximations of the data. The maximum 
number of terms was set to two for the robustness of the model. The 
resulting equations for the four conditions are summarized in Table 
1. Figure 5A shows graphic illustrations of the relationship between 
suggestion timing and response time of two example conditions . 

5.7.2 Response Rate. Response rate was defned as the likelihood 
that participants accepted a correct suggestion. We applied MARS to 
model the relationship between the response rates and suggestion 
timings directly. Specifcally, suggestion timing was used as a pre-
dictor and the accuracy of the suggestion was as the target variable 
(0: incorrect, 1: correct). The regression results then approximated 
the percentage of participants accepting a correct suggestion over 
time (Figure 5B). Table 1 summarizes the corresponding MARS 
models. 

5.7.3 Delayed Time. Delayed time was the time delay that was 
incurred due to incorrect suggestions. For a given trial, it was in-
feasible to record the task completion time both with and without 

- Sample.PNG 

Figure 5: Examples of the modeling results for response 
time, response rate, and delayed time. The dots represent the 
data trials, the black lines are the model ftting results pro-
vided by MARS, and the ribbons indicate 95% CI. 

a suggestion (even if we repeated the trial, factors such as learning 
and familiarity would difer). Therefore, this metric was computed 
using the task completion time of each trial with an incorrect sug-
gestion minus the average task completion time in the correspond-
ing condition with no suggestion. The calculated distribution then 
allowed us to determine the average delay an incorrect suggestion 
would cause across diferent suggestion timings (Figure 5C). The 
delayed time data was ft into the MARS model for each condition. 
The results are summarized in Table 1. 

5.8 Summary 
Based on the data collection results, MARS models were able to sim-

ulate how participants would respond to an intelligent suggestion 
at diferent timings (Table 1). The models resulted in reasonable 
approximations of cost functions Cost(t) and beneft functions 
Benefit(t) for the two objectives. The gain of displaying an intelli-
gent suggestion at timestamp t can thus be calculated via Equation 
4 and 5. From the study results, it was also determined that the 
gain functions for the four conditions (Task Type × Suggestion 
Method) were quite diferent. Therefore, the four conditions were 
handled diferently in later evaluations. 

6 STUDY 2 - SIMULATION 
The primary goal of the second study was to conduct a theoretical 
evaluation of the two suggestion timing optimization strategies -
Optimal Thresholding (OT) and Reinforcement Learning (RL). To 
achieve this, a mock target prediction model that generated various 
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Table 1: Summarization of the modeling results from MARS (multivariate adaptive regression splines). 

Task Type Suggestion Method Response Time Response Rate Delayed Time 

Dense Target Selection Highlighting 0.90 + 0.83 · h(1.19 − x) 0.97 − 0.24 · h(x − 1.02) 0.01 + 1.08 · h(x − 1.96)
Dense Target Selection Pop-up Notifcation 1.13 + 0.13 · h(x − 1.60) 1.00 − 0.24 · h(x − 0.98) 0.57 + 2.25 · h(x − 2.52)
Text Matching Highlighting 2.91 0.90 0.66 + 0.84 · h(x − 1.29)
Text Matching Pop-up Notifcation 1.47 0.96 − 0.03 · h(x − 3.90) 4.94 − 0.61 · h(7.13 − x) 

data trials (Dtr ain ) during the two task scenarios was built. Simu-
Table 2: Testing results when using Optimal Thresholding 

lations were run to estimate the gain of the optimization strategies. (OT) and Heuristic Thresholding (HT) regarding the dense 

To constrain the search space, the study focused on applying high- target selection (DTS) task and the text matching (TM) task. 
lighting suggestions for the dense target selection task, as it was 
less intrusive, and using pop-up notifcations for the text matching Task Strategy (Th.) Time Saved/Usage% % Improved 

DTS e
d

OT (0.47) 0.4073s (0.3202s) 39.39% 
DTS HT (0.85) 0.2922s (0.3645s) -

TM

T
i
m
e
 s
a
v

OT (0.98) 1.6211s (1.7946s) 260.89% 
TM HT (0.50) 0.4492s (1.1440s) -

DTS OT (0.81) 65.69% (18.30%) 0.36% 
DTS 

U
s
a
g
e
 %

HT (0.85) 65.45% (20.42%) -

TM OT (0.96) 87.17% (18.53%) 51.52% 
TM HT (0.50) 57.53% (15.63%) -

task, as it led to quicker responses. 
The following subsections frst present the mock target predic-

tion model that was used to generate Dtr ain and then introduce the 
four simulation experiments that were undertaken. In Simulation 
1, the performance of OT was bench-marked for the time saved for 
participants versus the suggestion usage percentage. The perfor-
mance of the baselines that leveraged the design heuristics were 
also used to determine thresholds. In Simulation 2, RL was applied 
for optimization. In Simulation 3, multi-objective optimization (i.e., 
time saved and usage percentage) was run with OT. 

6.1 Target Prediction Model Mock-up 
As most models’ prediction accuracy values seem to follow sigmoid 
curves over task progression (e.g., [2, 15, 20, 36]), we simulated a 
similar model by mimicking the observed sigmoidal relation be-
tween accuracy and time to generate Dtr ain . Specifcally, for each 
trial, we frst sampled trial length T based from the log-normal dis-
tribution found in the frst session of Study 1 (Figure 6A). Then, a 
sigmoid function of task progression regarding prediction accuracy 
was computed (Figure 6B-C) and deviations (i.e., spikes and dips) 
were added to the sigmoid function (Figure 6D). More details of this 
mock-up target prediction model can be found in Appendix B.1. 

The mock-up target prediction model was limited in that it only 
mimicked the appearance of the confdence curves, so it did not 
capture the inherent decision information of a real target predic-
tion model. However, if the optimization strategies worked with 
a pseudorandom model, then they may also work with an actual 
target prediction model. Next, we present simulation results based 
on 30,000 trials generated by the mock-up prediction model for 
each task scenario. The trials were separated such that 90% were 
used for training and 10% were used for testing. Among the training 
data, 10% was used for hold-out validation. We present only testing 
results in the paper while readers can fnd the validation results in 
Appendix B.2. 

6.2 Simulation 1: Optimal Thresholding 
The Optimal Thresholding (OT) strategy sought to learn an opti-
mized confdence threshold from the dataset that would lead to the 
best gain. To achieve this, diferent confdence values were tested 
(qt ∈ [0, 1], 0.01 per step) and the corresponding gain was calcu-
lated using Equation 4 and 5 from the frst study. Figure 7 presents 
two examples of how the gain in the time saved condition changed 

as the confdence threshold qt varied. The optimized threshold was 
quite diferent for the dense target selection task (thres = 0.47) 
compared to the text matching task (thres = 0.98). 

To benchmark the performance of OT, we picked a threshold 
that worked the best on the validation dataset and produced the 
corresponding results on the testing dataset. The baseline (i.e., 
Heuristic Thresholding) for the dense target selection task was 
determined to be thres = 0.85, which was directly appropriated 
from a similar point-and-select task in the literature with sigmoidal 
prediction curves [20]. The baseline for the text matching task 
was thres = 0.50, which was used to predict participant selections 
in a search-intensive task like our text matching task (i.e., users’ 
intended ingredients in a sandwich-making task [36]). 

From the results, the optimized threshold was found to save 0.1 
seconds more than the baseline in the dense target selection task 
(around 40% of improvement) and 1 second more than the baseline 
in the text matching task (around 260% of improvement; Table 
2). The optimized threshold also led to an 87% suggestion usage 
percentage in the text matching task (around 50% of improvement). 
The optimized thresholds were quite diferent for the dense target 
selection task for the time saving optimization (thres = 0.47) and 
usage percentage optimization (thres = 0.81), while being similar 
for the text matching task (0.98 vs. 0.96). 

6.3 Simulation 2: Reinforcement Learning 
RL can potentially provide tailored solutions based on the target 
prediction confdence profle of each trial (e.g., the speed of in-
crease of the model confdence value) by fnding an appropriate 
threshold to display suggestions that works for that specifc profle. 
To achieve this, model-free RL techniques were leveraged because 
there was a lack of transition dynamics models for our problem. 
Thus, the model-free RL agents observed the model confdence esti-
mates qt from a target prediction model trained on Dtr ain , which 

8 



Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA 

Figure 6: The trial generation process for the mock-up target prediction model. (A) The model frst computes the trial length 
based on the log-normal distribution found in Study 1 for task completion time. (B) The model forms a sigmoid function of 
task progression with respect to prediction accuracy. (C) The sigmoid function varies within a predefned region (the dashed 
lines indicate the 95% CI). (D) The model adds deviations (i.e., spikes and dips) to the trial. 

Figure 7: The expected gain for maximizing time savings for 
participants (y-axis) when using diferent confdence thresh-
olds (x-axis) based on the validation dataset. The unit of gain 
is a timestamp, where the time saved in seconds equals 0.02 
· timestamps. Dashed lines represent mean ± std . 

were replayed multiple times to the agent. On each trial, the agent 
explored diferent action sequences (i.e., displayed an intelligent 
suggestion or not) to ultimately fnd the optimal action sequence 
for a given qt trajectory that would lead to the maximum gain. 

6.3.1 Problem Formulation. The key elements of the RL agents 
were: 

• Observation: For a specifc timestamp t , the agent received the 
following observation {p1,p2, ...,pm , dt }. The probability values 
{p1, p2, ...,pm } were the model confdence values produced by 
the target prediction model over time. The integer m was the 
memory size of the agent. The list acted like a frst-in-frst-out 
queue where pm represented the most recent confdence value 
provided by the prediction model and p1 represented the least re-
cent. The foat dt recorded the last timestamp when a suggestion 
was displayed. 

• Action: The agent could take the following two actions based 
on the observation {display, not display}. The display action 
represented displaying an intelligent suggestion, so dt was up-
dated to the current timestamp t . The not display action hid the 
suggestion. 

• Reward: Three reward settings were used to train the RL agents. 
t

The frst was r1, where r = Gain(t) if a suggestion was dis-
1 

t
played at t , otherwise r = 0. The second reward setting, r2,

1 

sought to solve the reward sparsity issue in r1. Specifcally, re-
ward shaping was performed when the suggestion wasn’t dis-

t
played: r = Gain(t) if a suggestion was displayed at t , otherwise 

2 
tr = −k · pm . We used a hyper-parameter k to penalize the ac-
2

tion of not displaying any suggestion. An agent received more 
penalties if it did not display a suggestion when the model con-

t
fdence was high (pm ). The third reward r

3 also leveraged the 
beneft of dense rewards, but removed the agents’ reliance on 
the penalty factor k , which may have negative impacts on true 

t t −1 0
reward maximization. Here, r = Gain(t)−r (where r = 0) at 

3 3 3

a timestamp t . This essentially rewarded the agent based on how 
good it performed on a particularly timestamp t, by computing 
the contribution of agent’s action at t towards the gain. More 
details can be found in Appendix B.1.4. 

• Episode End Criteria: The current episode ended if t was larger 
than the maximum length of the trial T , or dt was larger than 0 
(which meant a suggestion was displayed). 

• Initialization: pm was initialized to the frst confdence value pro-
duced by the target prediction model, while all other probability 
values were set to 0. dt was initialized to 0. 

6.3.2 Methodology. OpenAI Gym [16] and Stable Baselines [34, 56] 
were used to build and train the RL agents. Our experimentation 
demonstrated that PPO2 with MLP policies was a lightweight and 
efective solution and ACER with LSTM was powerful but may 
take longer to train. We thus used these two strategies for fnal 
benchmarking. Since training these RL agents consumes a lot of 
resources, for demonstration purposes, we only optimized agents 
for the time saving objective and one agent for the usage percentage 
objective. More training details can be found in Appendix B.1.5. 

6.3.3 Results. The results showed that RL agents could provide 
around 40% of improvement in the dense target selection task and 
260% of improvement in the text matching task as compared to 
Heuristic Thresholding (Table 3). Compared to the results from 
Section 2, OT and RL led to very similar performance improvement 
in the two task scenarios; while RL did produce dynamic thresholds 
for each trial. We will return to this in later sections (Section 7.2.3 
and 8.2). 

6.4 Simulation 3: Multi-Objective Optimization 
So far, our approach focused on optimizing a single objective e.g., 
time saved or usage percentage. However, designers may need to 
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Table 3: Testing results of RL regarding regarding the dense 
target selection (DTS) task and the text matching (TM) task. 

Task Strategy Time Saved % Improved 

DTS PPO-MLP 0.4087s (0.3285s) 39.87% 
DTS ACER-LSTM 0.4084s (0.3362s) 39.77% 
TM PPO-MLP 1.6050s (1.7877s) 257.30% 
TM ACER-LSTM 1.5671s (1.7328s) 248.86% 

Task Strategy Usage% % Improved 

TM PPO-MLP 87.31% (18.05%) 51.76% 

Figure 8: Optimizing both the time saved for participants 
and the suggestion usage percentage with Pareto Frontier-
based multi-objective optimization. 

fnd optimal decisions in the presence of trade-ofs between two or 
more conficting objectives (e.g., minimizing task completion time 
and maximizing accuracy) in many applications. Multi-objective 
optimization is useful in such settings, when more than one ob-
jective function need to be optimized simultaneously. Therefore, 
we explored Pareto Frontier-based multi-objective optimization 
technique [45, 48], which generates a set of acceptable trade-of 
optimal solutions, to optimize the two objectives—time saved and 
suggestion usage percentage simultaneously. 

A given condition is called Pareto optimal if one dimension 
(i.e., objective) could not be improved without worsening other 
dimensions (i.e., objectives). In our case, we computed the gain 
of timing saving and usage percentage for each condition qt and 
plotted them on a two dimensional xy-plane (Figure 8). A Pareto 
optimal point was identifed if there was no point on the plane 
that was better in both x and y dimensions. The corresponding 
threshold qt of the point was then retraced. 

Following the above method, we identifed thresholds that could 
optimize both objectives simultaneously. Thirty-two Pareto op-
timal values were identifed for the dense target selection task 
(Thres = 0.47, 0.50 − 0.78, 0.80 − 0.81) and three Pareto optimal val-
ues were identifed for the text matching task (Thres = 0.96 − 0.98). 
The results indicated that the time saved and usage percentage 
objectives were somewhat conficting in the pointing task but not 
in the text matching task. Thus COBO can help practitioners who 
want to trade-of various optimization objectives. 

6.5 Summary 
These simulation experiments demonstrated diferent facets of op-
timization strategies using COBO. The experiments showed how, 
theoretically, OT and RL were both efective at determining the 

optimal timings at which to show an intelligent suggestion, while 
the performance diference between the two strategies was small. 
We found that for the dense target selection task, an intelligent 
suggestion should be displayed when the model confdence reached 
0.47 for optimizing time saved for users and 0.81 for optimizing 
suggestion usage percentage. For the text matching task, an intelli-
gent suggestion should be displayed when the model confdence 
reached around 0.96-0.98 for optimizing both objectives. 

It was also found that a non-optimized threshold could lead to 
much worse performance (e.g., 1 second longer in task completion 
time and a 30% smaller suggestion usage percentage in the text 
matching task) compared to an optimized strategy based on COBO. 
Not all intelligent suggestions were shown to be benefcial, however. 
Displaying suggestions early in the text matching task lead to a 
negative gain in terms of task completion time. 

7 STUDY 3 - VALIDATION 
The third study consisted of two empirical user experiments of 
COBO because of the high number of conditions. The frst one com-

pared the time saved and suggestion usage % for Optimal Thresh-
olding (OT) and Heuristic Thresholding (HT), fnding that OT saved 
participants more time and led to a higher suggestion usage percent-
age in the text matching task. The second experiment compared 
OT and RL strategies and found that OT and RL lead to similar 
performance. 

7.1 Validation 1 - Optimal Thresholding vs. 
Heuristic Thresholding 

The goal of validation experiment 1 was to empirically verify the 
efectiveness of Optimal Thresholding in comparison with Heuristic 
Thresholding. We also included a No Suggestion condition to help 
contextualize the impact of suggestion conditions relative to when 
the interface ofers no suggestions. 

7.1.1 Participants and Apparatus. Another 26 participants were 
recruited (i.e., fourteen women, eleven men, and one non-binary). 
Their ages ranged from 22 to 65 (mean = 36.1, std = 12.8). All 
participants had normal or corrected-to-normal vision and were 
right-handed. 23 participants had used VR devices 0-5 hours per 
week, two used 5-10 hours per week, and one had never used any 
VR device before. The same apparatus was used as in the frst study. 

7.1.2 Methodology. Participants experienced both task scenarios 
(i.e., dense target selection and text matching). There were four con-
ditions (Strategy) for the dense target selection task: optimized 
thresholds for time saved (TS, thres = 0.47), optimized thresholds 
for suggestion usage percentage (UP, thres = 0.81, which was close 
to HT thres = 0.85 from a selection task [20]), balanced optimiza-

tion for both objectives (BA, thres = 0.64), and no intelligent sug-
gestions (NS). Similar to Study 2, we used highlighting suggestions 
for the dense target selection task. 

There were three conditions (Strategy) for the text match-

ing task: balanced optimization based on OT (BA, thres = 0.97), 
HT baseline (HT, thres = 0.50 from a search-heavy, mentally-

demanding task [36]), and no intelligent suggestions (NS). The time 
saved (thres = 0.98), suggestion usage percentage (thres = 0.96), 
and balanced (thres = 0.97) optimization conditions were combined 
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in this task as the thresholds were very close. We used pop-up no-
tifcations for the text matching task. This design enabled us to 
investigate multiple factors while keeping the study size reasonable 
at seven experimental conditions. 

48 trials of predictions were generated for each task scenario 
using the mock-up target prediction model from Study 2. Each trial 
contained the probability of the model making a correct suggestion 
(i.e., model confdence) over a fxed period of time. The diferent 
thresholding strategies were then applied to each trial to decide the 
timing of showing a suggestion. The 48 trials were fxed across con-
ditions to minimize the variances caused by the target prediction 
model. The average global centerline of the 48 trials followed a sig-
moid curve. The fnal correctness of the prediction (i.e., a predicted 
candidate which participants visually perceived) was determined 
based on the confdence value when displaying a suggestion. For 
example, if a strategy decided to display the suggestion when the 
confdence value was 0.6, the fnal prediction then had 60% chance 
to be correct. Among the 48 trials, the frst 3 trials were treated as 
practice trials. In total, 8190 trials were recorded (= 26 participants 
× 7 conditions × 45 repetitions) during this experiment. 

A similar experimental procedure was employed as the frst study. 
However, in this study, after completing each condition, participants 
were asked to complete a questionnaire that had three 7-point Likert 
scale questions probing easement, physical workload, and mental 
workload. The order of the task scenarios was randomized and the 
conditions within the scenarios were counterbalanced. The order 
of the formal trials were also randomized, however, the practice 
trials were always the same. 

7.1.3 Analysis and Results. While data was initially collected for 26 
participants, P1, P14, P19, and P26 were excluded as they never used 
intelligent suggestions in one or both of the tasks. The trials where 
participants had fnished before the suggestion appeared (i.e., 169 
(3.61%) dense target selection trials and 518 (14.76%) text matching 
tasks) were removed from the dataset. Because a mock-up target 
prediction model was used, there could have been trials where 
participants fnished earlier than the pre-determined time period. 
Thus, only trials where an intelligent suggestion was displayed 
were considered. We also removed outliers (mean ± 3std) (i.e., 45 
(0.96%) dense target selection trials and 42 (1.20%) text matching 
tasks). These pre-processing steps resulted in 6156 trials remaining 
for analysis (i.e., 3746 trials for dense target selection and 2410 trials 
for text matching). The trials were later averaged across participant 
and condition. The overall accuracy was 93.14% for the dense target 
selection task and 98.98% for the text matching task. 

For the dense target selection task, a linear mixed model with 
arcsinh transformation (as determined by the bestNormalize pack-
age) suggested that Strategy had a signifcant main efect on task 
completion time (F = 5.02, p = .003). A post-hoc analysis with 
Bonferroni correction showed that the completion time in NS was 
signifcantly longer than BA (p = .002), and marginally signifcant 
longer than TS (p = .084) and UP (p = .135) (all other p > .887). 
Another linear mixed model with exp transformation indicated that 
Strategy had a signifcant main efect on suggestion usage percent-
age (F = 65.69,p < .001). Post-hoc analysis suggested that usage 
percentages of UP (p = 0.056) and BA (p = 0.140) were marginally 
signifcant higher than TS. See Figure 9A-B for an overview. 

For the text matching task, a linear mixed model with sqrt trans-
formation suggested that Strategy had a signifcant main efect 
on task completion time (F = 59.79, p < .001). A post-hoc analy-
sis showed that participants performed signifcantly faster in BA 
than HT (p < .001) and NS (p < .001). HT was also found to have 
a signifcantly shorter task completion time than NS (p < .001). 
Another linear mixed model with exp transformation suggested 
that Strategy had a signifcant main efect on suggestion usage 
percentage (F = 420.45,p < .001). A post-hoc analysis indicated 
that BA had a signifcantly higher suggestion usage percentage 
than HT (p < .001). See Figure 9C-D for an overview. 

For the subjective questions, pair-wise comparisons (with Bon-
ferroni correction) identifed that BA led to lower mental workload 
(p = .012), and were possibly easier to use (p = .053), than NS 
in the text matching task. This suggests that using an intelligent 
suggestion could reduce workload and improve user experience. 

7.1.4 Discussion. The empirical results demonstrated the efective-
ness of the COBO optimization framework for the text matching 
task. As expected from the theoretical evaluation, the optimized 
condition (BA) led to shorter task completion times and higher 
suggestion usage % than the baseline conditions (HT and NS). 

The benefts due to COBO were more obvious in the text match-

ing task compared to the dense target selection, mainly because the 
dense task was very rapid and, as such, it was more difcult to have 
substantial diferences in suggestion timings (thus their efect on 
time saved for users and suggestion usage percentage). However, 
the patterns across the two tasks were consistent. The signifcantly 
higher suggestion usage in text matching, in particular, could be 
impactful in lowering user’s efort, which is suggested in the lower 
mental load scores of the balanced optimization. 

7.2 Validation 2 - Optimal Thresholding vs. RL 
The primary goal of the validation experiment 2 was to compare 
Optimal Thresholding (OT) vs. RL strategies for time saved and 
suggestion usage percentage. Based on the fndings from validation 
1, in this study, only the text matching task was used, as it was more 
likely to lead to verifable performance diferences in an empirical 
user study than the dense target selection task. 

7.2.1 Participants and Apparatus. 12 participants (6 women, 5 men, 
and 1 non-binary) who had participated in the frst validation 
study were recruited for the second validation study. Since the 
time interval between validation experiment 1 and 2 was more 
than a week and the strategy diferences were hard to verify by 
seeing only the suggestion itself, it was presumed to be reason-
able to reuse participants. Participants’ age ranged from 22 to 63 
(mean = 35.9, std = 10.9). The same apparatus were used as in 
validation study 1. 

7.2.2 Methodology. The study employed a 2 × 2 within-subject 
design: Objective (time saved and suggestion usage percentage) × 
Strategy (OT and RL). Based on Study 2, thres = 0.98 was used for 
time saved optimization and thres = 0.96 was used for suggestion 
usage percentage optimization. The PPO-MLP agent from Study 2 
was used. 

The same 48 trials were used to generate the corresponding sug-
gestion timing in each condition, and a similar study protocol was 
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Figure 9: Results of average task completion time and suggestion usage percentage in the frst validation experiment of Study 3. 
The four conditions in the dense target selection task were time saved optimization (TS), usage percentage optimization (UP), 
balanced optimization (BA), and no suggestion (NS). The three conditions in the text matching task were balanced optimization 
(BA), Heuristic Thresholding (HT), and no suggestion (NS). The error bars represent mean ±std . ** means p < .01 and *** means 
p < .001. 

employed as validation study 1. In total, 2160 trials were collected 
(= 12 participants × 2 objectives × 2 strategies × 45 repetitions). 

7.2.3 Analysis, Results, and Discussion. After removing outliers 
(mean ± 3std , 11 trials, 0.51%) and trials where participants fn-
ished before the suggestion appeared (709 trials, 32.8%), 1440 trials 
remained for analysis. The overall accuracy was 99.59%. 

A linear mixed model with sqrt transformation was not able to 
identify that Strategy had a signifcant main efect on task com-

pletion time (F = 0.18, p = .674). Another linear mixed model with 
Yeo-Johnson transformation was not able to identify that strat-
egy had a signifcant main efect on suggestion usage percentage 
(F = 0.74,p = .397). Strategy was not shown to have signifcant 
main efects on any of the subjective scales. In summary, our results 
did not fnd any signifcant diferences between OT and RL that 
lead to identifable diferences in the optimization metrics (Figure 
10A-B). 

We were further interested to see whether RL proposed diferent 
suggestion timings than OT in the 48 trials. For the time saved 
optimization, RL and OT led to a similar suggestion timing (∆ < 
0.1s) in most cases (72.9%). For 16.8% of the cases, the diference 
between them was > 0.5s. For usage percentage optimization, there 
were 68.8% trials where RL and OT led to a similar suggestion 
timing (∆ < 0.1s) and 8.3% trials that resulted in diference > 0.5s. 
In the trials with diference >0.5s, RL always attempted to display 
an earlier suggestion to save more time for users. On average, RL 
showed the suggestions 0.79s (std . = 0.38s) earlier in these trials as 
compared to OT. 

Figure 10C-D demonstrate two examples wherein RL fnds dif-
ferent thresholds than OT. RL strategy seems to be observing the 
trend of the model confdence curve and displaying a suggestion 
once the curve is likely to plateau in the near future. Figure 10C 
shows a trial where RL saved 0.31 less than OT on average, and 
Figure 10D shows a trial where RL saved 1.79s more. Thus, RL is 
certainly able to learn a strategy that results in dynamic thresholds 
that match OT performance on average, but it remains to be seen 
if/when RL may be able to outperform optimal thresholds. 

8 DISCUSSION 
We’ve conducted a series of three studies that demonstrated the 
theoretical and empirical efectiveness of our COBO (cost-beneft 
optimization) framework for suggestion timing optimization. In 
this section, we further refect on our experiences in terms of the 
cost and beneft quantifcation of the two optimization objectives 
and the strength of RL as an optimization strategy as compared to 
Optimal Thresholding. We also discuss the generalizability of the 
framework to other applications and the limitations of our studies. 

8.1 Optimization Objectives 
Our work demonstrates a successful optimization of two objec-
tives: time saved by users and suggestion usage percentage. The 
COBO framework is designed to help optimize various objectives, 
either individually or simultaneously, as long as a cost and beneft 
quantifcation method can be determined. We used data collected 
from participants (Study 1) to construct cost and beneft functions 
with variables such as response times, response rates, and delayed 
times. The validation studies indicated that the constructed cost and 
beneft functions were good approximations of the ground truth. 

The time savings in our case, even though signifcant, are small 
especially in the dense target selection task. However, existing work 
has shown that users prefer intelligent suggestions despite nega-
tive time costs [54] because they were considered less physically 
demanding and efortful. The fact motivated us to quantify the 
beneft of intelligent suggestions beyond performance improve-

ments. While usage percentage is an efective proxy that assumes 
that higher suggestion usage is always benefcial for a user to 
lower their interaction friction [38], a highly promising avenue for 
future work is in optimizing directly for efort, physical and mental-

demand especially as we become better at real-time estimations of 
quantities like arm fatigue [18] and satisfaction [24, 53]. 

For simplicity, we omitted some rare conditions during cost-
beneft quantifcation. For example, we excluded the trials where 
users mistakenly triggered the selection of an incorrect suggestion. 
Such instances were very uncommon (0.4% overall) and did not 
signifcantly impact the suggestion usage percentage or the time 
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Figure 10: Results of average task completion time (A) and suggestion usage percentage (B) in the second validation experiment 
of Study 3. The four conditions were usage percentage optimization with RL (UP-RL) and Optimal Thresholding (UP-OT) and 
time saved optimization with RL (TS-RL) and Optimal Thresholding (TS-OT). The error bars represent mean ± std . (C) and (D) 
show example trials where RL and Optimal Thresholding (OT) yielded noticeably diferent suggestion timings. On average, 
RL saved 0.31s less in (C) and 1.79s more in (D) than OT. 

cost of an incorrect suggestion. However, future endeavors can ex-
tend our framework to consider mistaken triggering of an incorrect 
suggestion especially if those instances are not rare and/or if they 
require a costly recovery from the mistake [12, 40]. One simple way 
might be to consider modeling this as a constant time cost (e.g., 
recovery time). 

8.2 RL as an Optimization Strategy 
We found that RL was able to learn a successful strategy and produce 
dynamic thresholds across trials. However, RL’s dynamic thresholds 
weren’t able to outperform the single optimal threshold on average 
in our simulation and validation study. 

As we report, there were a small, but signifcant percentage of 
trials where RL’s suggestion timing difered by >0.5s compared 
to OT. However, we did not fnd any big discernible patterns in 
these trials compared to others. It will be worth investigating task 
contexts where the percentage of such trials is higher. Another 
reason for RL’s similar performance to OT might be that the room 
of improvement for RL was small, as Optimal Thresholding (OT) 
already performed very well. The analysis demonstrated that even 
the theoretical maximum of a perfect agent (i.e., agent that maxi-

mizes the gain by knowing the whole trial profle) can lead to no 
larger than 0.18s and a 4.3% improvement over OT in task comple-

tion time and suggestion usage percentage, respectively, with our 
dataset. It will be interesting to see if there are contexts where OT 
does not achieve performance close to the theoretical maximum. 

We can propose two variables to explore here that may help 
diversify our task context. First, is to look at trials with durations 
that are much more variable. Looking at the validation study data 
more closely, we found a weak correlation between the time-saving 
diferences (RL − OT ) and trial length (R2 

= 0.10) which indicated 
that the RL agent saved more time than OT in longer duration trials. 
Second, is to look at target prediction models that are not sigmoidal 
in nature (as an example, models that start with a high prior con-
fdence using earlier user activity), and may follow patterns that 
cannot be easily captured using a single OT. 

RL may also prove to be useful in scenarios where an interface 
wants to show more than one intelligent suggestion and the sug-
gestions get updated based on users’ behavior. It might be hard 
to directly apply OT in these scenarios. Also, in case a designer 
wants to enable diferent suggestion types within the same task 

(example, both highlighting and pop-up notifcation), an RL agent 
could choose the most appropriate suggestion type based on the 
gain of those options at diferent timings. An interesting area of 
exploration is the long-term use of such intelligent suggestion in-
terfaces. A user may form an expectation of how well the model 
performs, which can in turn infuence their response behavior, thus 
changing the cost-beneft quantifcation over time. An online RL 
agent may also prove useful in such cases. 

8.3 Applications 
This research has demonstrated the application of COBO in two 
task scenarios (dense target selection and text matching) and two 
objectives (minimizing user task completion time and maximiz-

ing intelligent suggestion usage). The two tasks and suggestion 
types were intentionally chosen to be representative of popular use 
cases. The dense target selection task aims to simulate physically-
demanding tasks where users need to select objects in cluttered 
environment [46, 64], and the text matching task mimics real-world 
search-heavy scenarios such as searching for ingredients from a re-
ceipt [25, 63]. Object highlighting and pop-up notifcation are both 
common visualizations to inform users about system events [57]. 
Additionally, in Appendix B.3, we also present results on success-
fully applying COBO on a dataset from the literature which records 
hand movement trajectories when reaching virtual objects at difer-
ent locations. We further envision COBO being extensible to other 
tasks and facilitation. 

8.3.1 Extending to other tasks. The framework can be retrained for 
other applications that want to leverage intelligent predictions us-
ing target prediction models that rely on hand, head, gaze, and other 
contextual information [31, 70] in selection tasks such as pointing, 
visual search, and text-entry. By following the COBO framework, 
practitioners may choose diferent models, objectives, and cost-
beneft quantifcation methods which are tailored for their applica-
tions. Overall, based on our user-centric computational framework, 
designers are more likely to provide intelligent suggestions that 
support their intended goals, rather than leading to unexpected 
outcomes [50, 54]. 

8.3.2 Extending to other facilitation. COBO’s framework can also 
be extended to facilitate techniques other than intelligent sugges-
tions such as expanding [44] or auto-selecting [1, 4] a predicted 
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target, as well as for more than one suggestions simultaneously or 
sequentially. 

8.4 Target Prediction Model 
The current research builds on certain assumptions to simplify the 
complex problem space. One assumption is the use of a mock-up 
target prediction model, as we wanted to simulate a highly repre-
sentative prediction model, rather than choosing one at random. 
Therefore, we carried out a literature survey to extract the com-

monalities among prediction models and then created a simulation 
from those commonalities (Section 6.1). However, our inspirations 
were from human behavior models of target reaching [20] and 
searching [36] where the model prediction accuracy was typically 
high during the later stage of the task because the selection indi-
cator (e.g., hand or gaze point) was “approaching” or “almost on” 
the target and the user was just “fne-tuning” the selection of the 
target. For example, in the text matching task, we imagined that 
the gaze direction would reach the targeted object way before the 
controller-based manual pointing selection (i.e., the model has very 
high confdence based on gaze features no matter the position of the 
hand pointer), as Huang et al. [36] could correctly anticipate the in-
tended object through gaze sequences 1.8s before a speech request. 
We acknowledge that there are other types of models that may not 
have such rich features. Future work can deploy this framework 
to any prediction model to test it on new use cases. This, however, 
did mean that the intelligent suggestions were not delivered dy-
namically based on a user’s behaviour. For experimental control, it 
was important that this be the case while developing and validating 
the COBO framework. However, future research should investigate 
how the framework responds to a real prediction model. 

One additional consideration of the current approach is that it re-
quires a dataset of model confdence curves to calculate user-centric 
costs and benefts over time. In a real scenario where a designer 
has a target prediction model and its training dataset, the train-
ing dataset should contain trials with necessary features (e.g., user 
behavior data, completion times) so the designer can directly use 
those for confdence curve generation and cost-beneft computation 
(see Appendix B.3 for an example). In a condition where the feature 
dataset is missing, another possible solution is to apply models to 
simulate user behavior. During the planning phase of this research, 
our initial idea was to use existing computational models (e.g., min-

imum jerk model) to generate a large volume of user behavior data. 
However, we encountered two challenges. First, we did not know 
how users would behave according to correct/incorrect suggestions 
that appeared at diferent timings (so it was hard to incorporate 
this element into the model). Second, a user behavioral model for 
the text matching scenario is still largely underexplored (unlike 
bio-mechanical behavior modeling for pointing and reaching as in 
Cheema et al. [18] and Fischer et al. [23]). Therefore, we decided 
to collect new data from real users. However, we do believe using 
model-generated datasets for user cost-beneft quantifcation can 
be helpful in the future with more advances in the feld. 

9 CONCLUSION 
Predictive systems are helpful ways to lower input friction and im-

prove user experiences in current VR/AR systems [38]. Specifcally, 

selection facilitation techniques that leverage target prediction mod-

els can alleviate the need for manual pointing and visual search, 
and can potentially lead to quicker, easier, and more comfortable 
interaction. While current target prediction models only ofer which 
target a user intends to select, we built a framework (COBO) that 
helps determine when an intelligent suggestion should be displayed 
to maximize its benefts. 

COBO is a computational framework that determines the opti-
mal timing of an intelligent suggestion for each interaction based 
on user-centric costs and benefts. In a set of studies, we demon-

strated that COBO is efective at determining the optimal timing 
of intelligent suggestions. The frst study focused on measuring 
and quantifying the costs and benefts of an intelligent suggestion 
displayed at diferent timings when trying to satisfy two objectives 
(i.e., time saved for users and suggestion usage percentage) dur-
ing two tasks (i.e., dense target selection and text matching). We 
then run simulations with two optimization strategies (i.e., Optimal 
Thresholding and RL) for single- and multi-objective optimizations. 
We found both Optimal Thresholding and RL led to better perfor-
mance compared to heuristic-based thresholding approaches. For 
example, both optimization strategies led to around 40% improve-

ment in terms of task completion time in the dense target selection 
task and 260% improvement in the text matching task. We also 
demonstrated the efectiveness of COBO for multi-objective opti-
mization. The third study contained two validation experiments 
that compared Optimal Thresholding, RL, heuristic-based thresh-
olding, and no suggestion conditions. The experimental results 
suggested that COBO-based optimization strategies led to shorter 
task completion times and higher suggestion usage percentages, 
and were preferred by participants in the text matching task when 
compared to baselines. 

From both theoretical and empirical perspectives, we showed 
that an optimized strategy based on COBO can perform signif-
cantly better than non-optimized heuristic-based approaches in 
maximizing the time saved by users and increasing suggestion us-
age percentages. Overall, we envision the introduced framework 
will unlock efective intelligent suggestions, which will beneft 
future predictive systems. 
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A STUDY 1 - DATA COLLECTION 

A.1 Task Scenarios 
Two task scenarios, representative of common interaction tasks that 
are efortful to perform, were employed. The dense target selection 
task represented a manually-intensive task, where participants 
needed to select a small object located at the center of a cluster [46, 
64]. The text matching task served as a mentally-demanding task, 
where participants needed to fnd and select an object with text that 
matched a target text. This task simulated real-world, search-heavy 
scenarios like searching for ingredients from a receipt, fnding street 
names on a map, or browsing through a menu [52]. 

A.1.1 Dense Target Selection Task. This task was inspired by exist-
ing literature on small and dense target selection [46, 64]. The goal 
was to select the earth icon at the center of a planet cluster (Figure 
3, left). The cluster was surrounded by other planet icons, which 
were randomly sized and distributed to add noise to the task envi-
ronment. This setting required participants to aim precisely [64] 
and simulated scenarios where participants need to select objects 
in a cluttered virtual scene (e.g., select a keychain in a messy room). 

The angular size of the target was set to 1◦, which was deter-
mined by previous research to be sufciently challenging [70]. The 
angular distance, or required movement amplitude, was fxed to 
90
◦
, and the target was generated in a predefned list of locations 

that were no more than 30◦ 
away from the horizontal plane. This 

target placement required participants to rotate their heads to fnd 
the out-of-view object, which added physical workload, without 
requiring that they overextend their neck. The distractors that were 
located directly adjacent to the target were the same size as the 
target, while others were randomly sized between 0.6◦ 

and 2◦. 
Participants started the task by pointing at a button at a fxed 

center position. A blue 3D arrow then appeared to indicate the 
location of the target. The arrow was designed to minimize search 
time in this task [69]. Participants then followed the direction of 
the arrow to point at the target through the right-hand controller 
and pressed the trigger to confrm their selection. 

A.1.2 Text Matching Task. This task was designed to require par-
ticipants to perform a difcult visual search (mentally-demanding) 
[25, 63]. Participants were required to fnd a target text string that 
matched a prompt (Figure 3, right) in a 6×7 grid of texts strings. 

The angular distance between the candidates was 10◦ 
horizon-

tally and 2.8◦ 
vertically to make sure all objects were located within 

feld of view of participants to minimize their physical workload 
(e.g., turning their bodies to search for the target). The object radius 
was set to 1.5◦ 

and all objects were placed on a spherical plane. 
Participants started the task by memorizing the target string and 

selecting a button at a fxed center position. All candidate strings 
then appeared with the goal text reminder at the top of the grid. To 
complete a task trial, participants pointed at the target icon using 
the controller and pressed the trigger to select it. 

A.2 Suggestion Method 
Two suggestion methods were used in the study—a highlighting 
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fuorescent outline was displayed around the 
suggested object (Figure 4 left). A symbol of Button A also appeared 
at a pre-determined, unoccluded position close to the indicated ob-
ject to depict that the object could be selected by pressing the 
Button A on the Touch controller. Participants could also cancel 
the suggestion by tilting the joystick to the right. Note that the 
highlighting suggestion was in-situ, so it remained at the object 
location without following the direction participants were looking. 

With the pop-up notifcation suggestion, a suggestion window 
appeared at the bottom of the participant’s current viewing di-
rection (Figure 4 right) [57]. The suggestion presented either a 
predicted icon in the dense target selection task or a text string in 
the text matching task. When participants rotated their viewing 
direction, the pop-up notifcation followed the viewing direction 
using horizontal linear interpolation. Linear interpolation was not 
applied in the vertical dimension to avoid the suggestion being 
“stuck” on the head-mounted display, which may have caused vi-
sual discomfort. Like the highlighting suggestion, participants could 
quickly access the suggested object via the Button A or discard the 
suggestion by tilting the joystick to the right. 

A.3 Example Data Trials 
We show example data trials collected in session 2 in Figure 11. 

A.4 Results - Session 2 
Figure 12 shows the average response times and delayed times for 
the suggestion methods and task types. We performed signifcance 
tests with linear mixed models on response time and delayed time. 

A.4.1 Response Time. Response time was defned the time elapsed 
between the appearance of a correct intelligent suggestion and a 
participant’s selection of that suggestion. First, the Yeo-Johnson 
transformation, as chosen by the bestNormalize package in R, was 
applied to normalize the data. A linear mixed model was then used 
to identify whether diferent task types and suggestion methods 
lead to diferent response times across various suggestion timings. 
We set Task Type, Suggestion Method, and Suggestion Timing 
as fxed factors and Participant as a random factor. The linear 
mixed model indicated that there were interaction efects between 
Suggestion Method × Suggestion Timing (F = 125.18, p < .001) 
and Task Type × Suggestion Timing (F = 49.47, p < .001). As 
Task Type and Suggestion Method led to diferent response times 
across Suggestion Timing, we used multivariate adaptive regres-
sion splines (MARS) to model the relationships between suggestion 
timing and response time. 

A.4.2 Response Rate. Response rate was defned as the likelihood 
that participants accepted a correct suggestion. Signifcance testing 
was not applied because the “rate” variable was only meaningful if 
we considered multiple data points. 

A.4.3 Delayed Time. Delayed time was the time delay that was 
incurred due to incorrect suggestions. Similar to response time, 
an arcsinh transformation as suggested by the bestNormalize 
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Figure 11: Example data trials from session 2. 

- Average.PNG 

Figure 12: Average response times and delayed times for the 
suggestion methods (highlighting and pop-up notifcation) 
and task types (dense target selection and text matching). 
The error bars represent mean ± std . 

package, was applied and a linear mixed model was used to iden-
tify signifcant interaction efects between Task Type and Sug-
gestion Method with regard to Suggestion Timing. The results 
indicated a signifcant efect of Task Type × Suggestion Timing 
(F = 5.30,p = .021), but not Suggestion Method × Suggestion 
Timing (F = 1.24, p = 0.267) nor Suggestion Method × Task 
Type × Suggestion Timing (F = 0.01, p = .928). 

B STUDY 2 - SIMULATION 

B.1 Target Prediction Model Mock-up 
B.1.1 Target Prediction Model Observations. A selection predic-
tion model based on the available data [20] was replicated and we 
observed how the predicted probability of the most likely object 
changed as the task progressed. Further, we drew inspiration from 
existing research on gaze-based target prediction [15, 36]. From 
these explorations, we made the following observations: 

• The global centerline of model confdence over time (i.e., the 
average trend across all trials) seems to be a sigmoid-like 
curve [14, 15, 20, 74]. Intuitively, model confdence acceler-
ates from a low point and becomes steady as it approaches an 
asymptote. 

• By replicating [20] and observing results in [36], we found that 
while the local centerline of the model confdence value (i.e., the 
general trend of each trial) seems to roughly follow a sigmoid-

like curve, it can deviate from the global centerline. While the 
local centerline can still be approximated by a sigmoid curve, 
the speed of increase can difer on each trial. 

• The fnal confdence curve of each trial, rather than the general 
trend, contains seemingly randomly-distributed deviations 
(i.e., spikes and dips) from the local centerline. The evidence 
was found by replicating [20] and observing results in [36]. 

B.1.2 Mock-up Prediction Model Generation. Based on these obser-
vations, the following trial generation process was formulated for 
our mock-up prediction model. Our goal was to produce reasonable 
model confdence curves that mimic an actual prediction model. 

• When starting to generate a data trial, the model frst sam-

ples a trial length tmax based on the log-normal distribution 
regarding user task completion time found in Study 1 (Fig-
ure 6A). This sampling approach allows the fnal dataset to 
approximate the distribution of user task completion time. 

• The model then generates a global centerline based on a sig-
moid functiony1 = siдmoid(x , k, x0,u, l) where k is the logistic 
growth rate, x0 is the sigmoid’s midpoint, u is the upper bound, 
and l is the lower bound (Equation 7). This simulates the ob-
servation that the global centerline follows a sigmoid curve in 
an actual prediction model (Figure 6B). 

u − l 
y1 = + l (7)

1 + e−k (x −x0)

• To simulate the variances in a local centerline, the model gen-
erates a Bell curve y2 = bell(x , µ, σ ) (Equation 8) to defne the 
area of deviation (see Figure 6C). The distance between the 
local centerline y3 and the global centerline is probabilistically 
sampled from a Gaussian distribution following Equation 9, 
where µr and σr are the predefned mean and standard devia-
tion of a Gaussian distribution. By generating random numbers 
from a Gaussian distribution (with random.gauss), it is more 
likely that a local centerline is close to the global centerline 

• The fnal step of the mock-up model is to generate spikes and 

than further away. 

1
x − 2  −( µ )

y2 = √ e 2σ 2 
(8) 

σ 2π 

y3 = y1 + y2 · random.gauss(µr , σr ) (9) 

dips based on the local centerline. To achieve this, the model 
uses a pre-determined probability jp to represent the likelihood 
of jumping to another randomly generated local centerline 
(new y3) at a particular timestamp t . The model goes through 
all timestamps in the trial and modifes the curve depending 
on it a jump will occur. The resulting curve preserves the 
property of previous steps: by averaging all generated trials, 
the centerline still follows a sigmoid function and the local 
centerline deviates within a predefned region. The model 
further corrects all probabilities larger than 1 to 1 and smaller 
than 0 to 0. A sample of a generated trial can be found in Figure 
6D. 

B.1.3 Dataset Generation. We pre-defned the parameters for the 
trial generation in later analyses. For the global centerline-related 
parameters, we set logistic growth rate k = 2, sigmoid’s midpoint 
x0 = tmax /2, upper bound u = 1, lower bound l = 0. This simulated 
a model that knew little information when users started a trial 
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and increased its confdence over time until it reached an almost 
perfect understanding when users fnished the trial, similar to the 
prediction models in [20] and [36]. Regarding the local centerline-
related parameters, we set the bell curve mean µ = tmax /1.9 and 
standard deviation σ = 1. We also set the Gaussian distribution 
mean µr = 0 and standard deviation σr = 1. The random jump rate 
jp was fxed at 0.05. The fnal results yielded visually similar curves 
as in the literature [20, 36]. The frame rate was determined to be 
50 (0.02 seconds per frame). 

B.1.4 RL Reward Setings. Three reward settings were used to train 
t

the RL agents. The frst reward setting was r1, where r = Gain(t)
1 

t
if a suggestion was displayed at t , otherwise r = 0. However, the 

1

sparsity in r1 (i.e., the agent only receives a single reward per trial) 
prevented many of the agents from learning to display a suggestion 
at all. 

The second reward setting, r2, sought to solve the reward spar-
sity issue. Specifcally, reward shaping was performed when the 

t
suggestion wasn’t displayed: r = Gain(t) if a suggestion was dis-

2 
t

played at t , otherwise r = −k · pm . We used k to penalize the 
2

action of not displaying any suggestion. Furthermore, an agent 
received more of a penalty if it did not display a suggestion when 
the model confdence value was high (pm ). The penalty factor k 
was treated as a hyper-parameter during training. While r2 worked 
well and enabled the agents to learn to display suggestions, a static 
value of k might have been limiting. In particular, the penalty of not 
displaying a suggestion should have changed as training progresses 
for true reward (i.e., gain function) maximization. In other words, 
the agent reliance on k should be reduced over the training process. 
Thus, k was decreased as the training progressed. 

The third reward setting also leveraged the beneft of dense re-
wards, but removed the agents’ reliance on the penalty factor k , 
which may have negative impacts on true reward maximization. In 

t t −1 0
this setting, r = Gain(t) − r (where r = 0) at a timestamp t .

3 3 3

This setting essentially rewarded the agent based on how good it 
performed on a particularly timestamp t, by computing the contri-
bution of agent’s action at t towards the gain. This reward setting 
thus allowed agents to learn directly from gain functions with dense 
feedback. 

B.1.5 RL Training Methodology. OpenAI Gym [16] with Stable 
Baselines [34] (for recurrent policies) and Stable Baselines3 [56] 
(for MLP policies) were used to build and train the RL agents. A 
preliminary analysis was frst run on the toy dataset to determine 
the appropriate model-free RL training algorithms (PPO2, DQN, 
A2C, and ACER), reward settings (r1, r2, and r3), policy architectures 
(MLP and LSTM), policy network size, and training epochs for both 
task scenarios using the default hyper-parameter settings from the 
Stable Baselines. This experimentation demonstrated that the PPO2 
training with MLP policies was a lightweight and efective solution. 
ACER with LSTM was the other powerful solution that worked 
well, but may take longer to train. r3 was also found to be more 
suitable for the dense target selection task, while r2 was better for 
the text matching task. The training with 4e6 steps was sufcient 
for MLP policies and 2e6 steps was adequate for LSTM policies, 
based on the convergence of gain in the validation dataset. 

After the preliminary exploration, full-range hyper-parameter 
searches were performed with Optuna [5] using the training dataset 
for memory size m, penalty k , network size, activation function, 
learning rate, batch size, discount factor γ , and other algorithm-

related parameters following the guidance of RL Baselines Zoo 
[55]. The model was then fne-tuned by focusing on several key 
parameters related to training. The training was stopped when 
the gain in the validation dataset converged. After training all the 
agents, their performance on the validation and testing dataset 
were benchmarked. 

B.2 Validation and testing results 
Detailed validation and testing results of Optimal Thresholding, 
Heuristic Thresholding, and RL can be found in Table 4 and Table 5. 

B.3 Simulation 4: Revisiting a Prior Study 
To determine the optimal timing of highlighting suggestions if we 
were to use an existing model for intelligent suggestion, we ran 
another simulation using an open-sourced dataset from a prior 
work [20]. The dataset contained 809 trials with four prediction 
features over time (i.e., position x, y, z, and rotation yaw every 10 
milliseconds) and a fnal selected target. The original work was 
replicated with respect to data augmentation, LSTM structure, and 
training protocol, resulting in a model with 95.06% testing accuracy. 
For COBO, the features were reft to the trained model to obtain 
model confdence values over time for the 807 trials. 

While it could be challenging to replicate the original study and 
acquire empirical data on participant response behavior towards in-
telligent suggestions, the following assumptions were made for the 
cost and beneft functions: (1) It would take participants 0.5 seconds 
(i.e., 0.25 seconds reaction time and 0.25 seconds trigger pressing 
time) to respond to a correct suggestion; (2) An incorrect suggestion 
would cause 0.25 seconds (i.e., reaction time) of delay; (3) partici-
pants would act rationally [62] and would not use a suggestion if 
the estimated response time (current time + 0.5 seconds) was larger 
than task completion time of that trial without any suggestion. 

Under these assumptions, the optimized threshold for the two 
objectives were calculated using the COBO framework. The results 
show that the optimized threshold for completion time (thres = 
0.90) was able to save 0.0801 seconds (std . = 0.1540 seconds) and 
the optimized threshold for the usage percentage (thres = 0.82) led 
to 52.27% (std . = 42.20%) of clicks. Nine Pareto optimal values were 
also found(thres = 0.82 − 0.90). The performance improvement in 
terms of time savings was small for this selection task, although 
a higher suggestion usage percentage could lead to better user 
experiences. The original authors’ estimate based on the prediction 
accuracy alone (thres = 0.85) was close to our simulation results. 
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Table 4: Validation and testing results when using Optimal Thresholding and Heuristic Thresholding on the time saved for 
users and on suggestion usage percentages. 

Task Type Strategy (Threshold) Time Saved/Usage% (Std.) % Improved Time Saved/Usage% % Improved 
Validation Test 

T
i
m
e
 s
a
v
e
d

Dense Target Selection Optimal Thresholding (0.47) 0.4073s (0.3169s) 44.07% 0.4073s (0.3202s) 39.39% 
Dense Target Selection Heuristic Thresholding (0.85) 0.2827s (0.3597s) - 0.2922s (0.3645s) -

Text Matching Optimal Thresholding (0.98) 1.5822s (1.7991s) 268.38% 1.6211s (1.7946s) 260.89% 
Text Matching Heuristic Thresholding (0.50) 0.4295s (1.1225s) - 0.4492s (1.1440s) -

Dense Target Selection Optimal Thresholding (0.81) 65.85% (17.70%) 0.64% 65.69% (18.30%) 0.36% 

U
s
a
g
e
 %

Dense Target Selection Heuristic Thresholding (0.85) 65.43% (20.24%) - 65.45% (20.42%) -

Text Matching Optimal Thresholding (0.96) 87.33% (18.44%) 50.72% 87.17% (18.53%) 51.52% 
Text Matching Heuristic Thresholding (0.50) 57.94% (15.85%) - 57.53% (15.63%) -

Table 5: Validation and testing results of RL regarding time saved for users and suggestion usage percentages. 

Task Type Strategy Time Saved (Std.) % Improved Time Saved % Improved Usage% (Std.) % Improved Usage% % Improved 
Validation Test Validation Test 

Pointing PPO-MLP 0.4078s (0.3253s) 44.25% 0.4087s (0.3285s) 39.87% - - - -

Pointing ACER-LSTM 0.4079s (0.3354s) 44.29% 0.4084s (0.3362s) 39.77% - - - -

Text Matching PPO-MLP 1.5673s (1.7878s) 265.91% 1.6050s (1.7877s) 257.30% 87.33% (18.18%) 50.72% 87.31% (18.05%) 51.76% 
Text Matching ACER-LSTM 1.5275s (1.7418s) 240.05% 1.5671s (1.7328s) 248.86% - - - -
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