
Optimizing the Timing of Intelligent Suggestion in Virtual Reality

Difeng Yu Ruta Desai Ting Zhang
University of Melbourne Reality Labs Research, Meta Inc Reality Labs Research, Meta Inc
Melbourne, VIC, Australia Redmond, WA, USA Redmond, WA, USA

Hrvoje Benko Tanya R. Jonker Aakar Gupta
Reality Labs Research, Meta Inc Reality Labs Research, Meta Inc Reality Labs Research, Meta Inc

Redmond, WA, USA Redmond, WA, USA Redmond, WA, USA

Figure 1: An overview of the intelligent suggestion timing problem. While a user is attempting to select an icon in virtual
reality, a target prediction model could be continuously estimating the likelihood that the user will select each icon (e.g., at
timestamp tx and ty). Depending on the results of these estimations, a system could then display an intelligent suggestion to
the user that highlights the most probable icon for them to select. This suggestion, for example, could enable them to select
an icon using a simple click, so that the user does not need to manually point towards the icon. While such suggestions could
improve the usability of intelligent user interfaces, it is currently unknown whether early suggestions, which could save the
user time and efort but may be less accurate, or later suggestions, which could save less time and efort but may be more
accurate, are more benefcial for users.

ABSTRACT
Intelligent suggestion techniques can enable low-friction selection-
based input within virtual or augmented reality (VR/AR) systems.
Such techniques leverage probability estimates from a target pre-
diction model to provide users with an easy-to-use method to select
the most probable target in an environment. For example, a system
could highlight the predicted target and enable a user to select it
with a simple click. However, as the probability estimates can be
made at any time, it is unclear when an intelligent suggestion should
be presented. Earlier suggestions could save a user time and efort
but be less accurate. Later suggestions, on the other hand, could
be more accurate but save less time and efort. This paper thus
proposes a computational framework that can be used to determine
the optimal timing of intelligent suggestions based on user-centric
costs and benefts. A series of studies demonstrated the value of the
framework for minimizing task completion time and maximizing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545632

suggestion usage and showed that it was both theoretically and em-

pirically efective at determining the optimal timing for intelligent
suggestions.

CCS CONCEPTS
• Human-centered computing → HCI theory, concepts and
models; Mixed / augmented reality; Virtual reality.

KEYWORDS
intention prediction, intelligent interfaces, optimization framework,
reinforcement learning

ACM Reference Format:
Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar
Gupta. 2022. Optimizing the Timing of Intelligent Suggestion in Virtual
Reality. In The 35th Annual ACM Symposium on User Interface Software and
Technology (UIST ’22), October 29-November 2, 2022, Bend, OR, USA. ACM,
New York, NY, USA, 20 pages. https://doi.org/10.1145/3526113.3545632

1 INTRODUCTION
Target selection in virtual and augmented reality (VR/AR) systems
is difcult, especially when interaction scenarios are complex (e.g.,
with small, faraway, cluttered objects) and input techniques are
cumbersome to use (e.g., mid-air hand pointing). Recent research
has utilized statistical or machine learning models to estimate the

1

https://doi.org/10.1145/3526113.3545632
https://doi.org/10.1145/3526113.3545632
mailto:permissions@acm.org

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

likelihood of a user selecting diferent items or objects of inter-
est [20, 25, 65]. Based on the estimated probabilities computed by
these models, an interaction system may then use visual highlight-
ing or display a notifcation to draw the user’s attention towards the
most probable target. Next, a user may select the predicted target
with a shortcut (such as a simple click) [1, 30, 70]. Such techniques
can alleviate the need to manually point at targets or conduct a
full visual search of an environment, potentially leading to quicker,
easier, and more comfortable interactions. They can also be use-
ful within VR/AR systems that employ noisy, high-friction input
modalities [1, 22, 70] or support scenarios that require users to
complete manually-intensive or mental-demanding tasks, such as
selecting objects in a cluttered environment or navigating through
a complex hierarchical menu [17, 25, 38, 71].

While current target prediction models can determine which
target a user may select, they cannot determine when intelligent
suggestions should be provided to users. While an earlier suggestion
could save a user time and efort, such suggestions have a higher
chance of being incorrect, which could cause users frustration,
break their trust, or decrease their performance [12, 40]. On the
other hand, later suggestions are likely to be more accurate but less
benefcial because users have already spent ample time and efort to
complete their task. By the time a model has accumulated enough
evidence to be certain of a user’s intended target, the user may have
almost completed their action, thus rendering the late-breaking
intelligent suggestion useless or disruptive (refer to Figure 1 for a
problem overview).

Despite this important nuance, existing target prediction models
have not scrutinized when to ofer a suggestion and instead used
a heuristically proposed probability threshold. For example, prior
work on forecasting which target a user might reach towards with
their hands used a threshold of 85% because the model seemed ac-
curate enough at that point based on their evaluation of the model
confdence value over time [20]. In contrast, Huang et al. used a
threshold of 43% when predicting which sandwich ingredient a user
might choose via gazing [36]. They used this threshold because it
was based on the average model confdence value for a correct pre-
diction. The mixture of design intuitions and model performance
observations used in this prior work may not lead to optimal sug-
gestion timings—one may wonder if a better threshold could be
chosen. Furthermore, this prior research did not consider the user-
centric costs and benefts of intelligent suggestions (e.g., the exact
time saved by a suggestion). Thus, this research introduces the
COBO (cost-beneft optimization) framework, which determines
the optimal timing of intelligent suggestions by considering user-
centric costs and benefts. Specifcally, COBO uses the probability
estimates computed by a target prediction model over time as input
and quantifes the cost and beneft of a suggestion to produce a fnal
gain function. The obtained gain function then enables the determi-

nation of the most benefcial timing for suggestions either through
optimization of this function or through designer’s intuition.

To study how users would respond to an intelligent suggestion
displayed at diferent timings, a dense target selection task and a
text matching task were implemented in VR. VR was chosen as the
testbed because VR input techniques such as mid-air pointing are
efortful and are likely to beneft from intelligent suggestions. Based
on the study results, cost and beneft functions were developed and

simulations were run under two optimization strategies – Optimal
Thresholding and Reinforcement Learning – to minimize user task
completion time and maximize intelligent suggestion usage. The
efcacy of these strategies was then verifed in two validation ex-
periments, which showed that COBO was helpful for determining
the optimal timing of intelligent suggestions both theoretically and
empirically.

The primary contributions of this research are:

• A framework (i.e., COBO) to optimize the timing of intel-
ligent suggestions through a computational approach that
considers user-centric costs and benefts.

• Study outcomes that demonstrate the efectiveness of COBO
for intelligent suggestion timing optimization on two objec-
tives: minimizing user task completion time and maximizing
intelligent suggestion usage.

2 BACKGROUND AND RELATED WORK
This research was informed by facilitation techniques that aim to
improve user performance and save user eforts in object selection
tasks. It also took inspiration from works that applied probabilis-
tic models to estimate user-intended target(s) and research that
leveraged Reinforcement Learning for objective optimization in
interactive applications.

2.1 Selection Facilitation Techniques
Selection facilitation techniques have been used as a method to
improve interaction since the introduction of early graphical user
interfaces. While numerous techniques have been proposed, the
majority decrease the movement distance required to reach a target
and/or increase the efective size of the target [28]. To shorten the
movement distance, techniques may snap the cursor to the target
(e.g., [10, 73]). To increase the target size, techniques may expand the
target [44] or resize the cursor [28, 46]. A visual indicator (e.g., visual
highlighting) may also provide feedback when a technique has
selected a candidate object. The user can then use an explicit action
(e.g., a button press) to confrm that the object that is currently
selected is the one they desired to select.

Selection facilitation techniques have also been explored in
VR/AR scenarios (see surveys such as [6, 42]). For example, Schjer-
lund et al. applied multiple virtual hands to shorten the selection
distance [60] and Baloup et al. compared various raycasting-based
methods that enlarged the objects’ efective size in VR [11]. Selec-
tion facilitation techniques have been applied to VR/AR systems be-
cause mid-air pointing, which is a commonly used input modality in
these systems for 3D input, can be inefcient and imprecise [7, 70].

More relevant to the present research are selection techniques
that predict user-intended targets [1, 70]. In addition to decreas-
ing target distances and increasing target sizes, prediction-based
methods have also been found to reduce search time [15]. While a
user may have trouble fnding the intended target in more complex
environments (e.g., those with lots of visual clutter), an intelligent
suggestion can present a potential target to users, thus minimizing
the time spent searching and manually pointing. We describe these
techniques in the next section.

2

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

2.2 Target Prediction
Users’ intended selection targets can be sensed through behavioral
cues, such as body and eye movements. Much existing research
focuses on building models that appropriate gaze traces or scan-
paths to predict selection intentions [21, 37, 39, 59, 61, 72]. For
example, Borji et al. [15] built models that predicted search targets
based on gaze fxations on a large random-dot array. Their model-

ing rationale was that attention and gaze are guided toward visual
features that are similar to a search target. Using this approach,
they demonstrated that their models outperformed a random base-
line, especially when a larger number of fxations was considered.
Huang et al. [36] used a support vector machine model to pre-
dict a customer’s intended target in a sandwich-making scenario
and made correct estimations approximately 1.8 seconds before a
customer’s spoken request. Sattar et al. [58] proposed a model to
predict the categories and attributes of user intended objects from
gaze data, which were then used to reconstruct plausible targets.
Researchers have also explored target forecasting in VR (e.g., [35]),
with some taking advantage of gaze fxations to anticipate users’
hand movements while reaching for objects [19, 26].

Hand and input device trajectories have also been used in selec-
tion tasks to infer user-intended targets [13, 14, 47, 74]. For exam-

ple, Ahmad et al. [1–4] investigated probabilistic intent prediction
approaches for in-vehicle touchscreen input based on pointing ges-
tures. Yu et al. [70] examined the selection distribution of VR input
controllers and used this information to predict the likelihood of a
user selecting a candidate object. Clarence et al. [20] used long short-
term memory (LSTM) models to predict the probability of selecting
candidate objects using hand-reach features such as position and
orientation. Researchers have also predicted future cursor positions
in target-agnostic manners (e.g., [10, 30–32, 41, 43, 51, 68]).

In addition to user behaviour, models can also make use of users’
preceding actions or contextual information to infer their next se-
lection intent [27, 66, 67]. For instance, Goodman et al. [27] applied
a language model for text entry to estimate the most likely selected
key based on an entered sequence and the current input distribution.
White et al. [67] leveraged interaction contexts such as previous
search queries and clicks to predict users’ short-term interests.

Although target prediction models can be efective at determin-

ing which object a user intends to select previous work has not
examined when intelligent suggestion should be enabled to maxi-

mize its benefts. Some researchers have used design intuitions to
trade-of between successful early predictions and the possibility
of introducing false positives [1, 20, 36]. Others chose to always
display a predicted target (e.g., typing predictions). However, in-
tuitions may not lead to optimized performance and always-on,
constantly changing suggestions during cursor navigation or visual
search might lead to user costs that were not anticipated, especially
in VR/AR scenarios where screen space is limited and distraction
may be costlier. As such, our research introduces a method for
optimizing the timing of intelligent suggestions that was designed
to be extensible to any of these aforementioned prediction models.

2.3 Reinforcement Learning
Recently, reinforcement learning (RL) has been used in the devel-
opment of adaptive user interfaces [25, 62] and human behavior

simulations [18, 33]. In a typical training setting, an RL agent in-
teracts with its environment using a set of actions and receives
corresponding feedback (i.e., rewards or penalties) to help it learn
from the environment [8]. Through this trial-and-error process,
the agent can discover an action policy that leads to a maximized
reward. Such a learning paradigm may be particularly suitable for
interactive settings that incorporate human-in-the-loop [9].

HCI researchers have applied both model-based and model-free
RL for interface optimization. For example, Todi et al. [62] leveraged
model-based RL that utilized predictive HCI models to estimate
a potential reward of an agent’s action. Their model-based agent
learned to adapt menu interfaces through order changing or group-
ing to improve user performance. In contrast, Gebhardt et al. [25]
applied model-free RL to support users in a visual search task by
showing and hiding object labels (e.g., price tags). Their RL agent
observed user behavior (i.e., gaze trajectories) and received rewards
or penalties depending on whether a label was shown when the
user’s gaze point was fxated on the object. Compared to model-

based approaches, the model-free agent did not make predictions
about the next state and reward before it took an action.

The present work employs model-free RL to discover an optimal
policy of suggestion timing. Model-free RL was chosen because it
does not require a transition dynamics model to derive a useful pol-
icy. The reward function integrated user-centric costs and benefts
in terms of, for example, the exact time saved in seconds.

3 RESEARCH OVERVIEW
Our framework relies on quantifying user-centric costs and benefts
of a suggestion over time (e.g, the exact time saved by a suggestion)
to produce a fnal gain function for optimal suggestion timing de-
termination. In the following sections, we introduce our framework
and present three studies that aimed to demonstrate and validate
the proposed framework.

The frst is a user study to collect data to approximate the cost and
beneft functions related to two optimization objectives (i.e., time
saved and suggestion usage percentage) in a manually-intensive
task and a mentally-demanding task. This is essential to complete
the cost and beneft quantifcation step in the framework.

The second is a simulation study where simulations were run
with two optimization strategies (Optimal Thresholding and Rein-
forcement Learning) for single- and multi-objective optimization.
These simulations aimed to optimize the gain functions related to
the objectives and theoretically evaluate the optimization strategies.

In the third study, the optimization fndings were empirically
validated by running user studies that compared the optimal timing
of intelligent suggestions produced by our framework against two
baselines—heuristic-based thresholding and no suggestion. The
baselines help contextualize the impact of our solution relative to a
literature baseline and interfaces that ofer no suggestions.

4 COBO FRAMEWORK
COBO (cost-beneft optimization) is a framework to optimize when
to display intelligent suggestions by considering the costs and ben-
efts that an intelligent suggestion may provide to the user (e.g.,
the exact time saved) given specifc timing and model probabilities.
More precisely, COBO takes input probability estimations from a

3

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

target prediction model and user-centric costs and benefts of a
suggestion over time to form a fnal gain function. The optimized
suggestion timing is then determined by fnding the maximum gain
on this gain function curve (Figure 2). To apply the COBO frame-

work, three components are needed: a target prediction model, a
method for cost and beneft quantifcation, and a strategy for gain
function optimization.

4.1 Target Prediction Model
Target prediction models are probabilistic models that infer a user’s
intended target of interest. A model typically produces a probability

k
distribution {p } among N potential candidates, which indicates t
the likelihood of a user selecting each candidate k ∈ K = {1, ..., N }
at timestamp t (Figure 2 left). It may then output the most likely
target and its corresponding probability value qt (also called the
model confdence). In the model, timestamp t ∈ {1, ...,T }, where
T is the total number of timestamps that the model produces es-
timations since the onset of the selection until the user manually
selects a target. In the present work, the target prediction models
produce output at a constant frequency f . Therefore, timestamp t
can be converted to time in seconds ts using ts = t/f .

The target prediction models can be trained using data col-
lected from various information channels (e.g., user hand move-

ment [1, 20], eye gaze information [21, 36], prior selection infor-
mation [27], etc.). While the output of the target prediction model
(i.e., probability estimates over time) is used as input to the COBO
framework, the model itself is not a part of the framework. For sim-

plicity, this research only displays intelligent suggestions for the
most probable object. Thus, only the model confdence qt is used
as input to the COBO framework rather than the whole probability
distribution. It is also assumed that model confdence is a reasonable
approximation of the ground truth prediction accuracy [29, 49].

4.2 Cost and Beneft Quantifcation
COBO requires a quantifcation of the user-centric costs and ben-
efts of displaying an intelligent suggestion over time based on
the optimization objective. For example, if the objective is to mini-

mize user task completion time, the cost and beneft quantifcation
can use an estimation on how long it takes users to respond to
suggestions, how much time a correct suggestion may save, and
how much of a time delay an incorrect suggestion may cause. Such
quantifcation can be specifed from the results of empirical user
studies or through literature-informed assumptions. The obtained
cost function Cost(t) and beneft function Benefit(t) can then be
used to build a fnal gain function.

The total gain of displaying an intelligent suggestion for the most
probable object at a particular timestamp t is shown in Equation 1.
The gain function is equivalent to the beneft obtained, multiplied
by the probability that the predicted object is the true target minus
the cost, multiplied by the probability of the object not being the
real target.

Gain(t) = Benefit(t) · qt − Cost(t) · (1 − qt) (1)

When applying the COBO framework, the gain objective can
vary in diferent applications according to a designer’s needs (e.g.,

minimizing completion time, minimizing induced errors, maximiz-

ing user satisfaction, etc.). This research demonstrates the optimiza-

tion of two gain objectives, i.e., the time saved by users and the
suggestion usage percentage.

4.2.1 Time Saved by Users. Task completion time is an obvious
metric of user task performance. Ideally, an efective user inter-
face shortens task completion time, while maintaining accuracy
to increase user efciency. To maximize time savings for users,
the following three variables were considered when displaying an
intelligent suggestion at timestamp t :

• Response time RT(t): the time elapsed between the frst ap-
pearance of a correct suggestion and the time when the user
applies the suggestion (e.g., through a simple click).

• Response rate RR(t): the overall user response rate to a cor-
rect suggestion.

• Delayed time DT(t): the average time delay caused by dis-
playing an incorrect suggestion.

For simplicity, we assume that there are minimal efects of i) the
delayed time of a correct suggestion if a user does not apply it and
ii) the response time of an incorrect suggestion if a user assumes it
is correct.

For a given trial with total timestamps T , the potential beneft
of displaying a suggestion at t is represented in Equation 2. The
equation can be interpreted as the estimated timestamps saved if a
correct suggestion is given at t , multiplied by their rate of response.
The max function ensures the beneft value is no smaller than 0.

Benefit(t) = max(0,T − (t + RT(t))) · RR(t) (2)

The potential cost is the time delay caused by an incorrect pre-
diction (Equation 3).

Cost(t) = DT(t) (3)

Inserting Equation 2 and 3 into Equation 1, results in an esti-
mated gain function that considers the timestamps saved for users
(Equation 4). It can be converted to the time saved in seconds by
dividing it by the model output frequency f .

Gain(t) = max(0,T − (t + RT(t))) · RR(t) · qt − DT(t) · (1 − qt) (4)

4.2.2 Suggestion Usage Percentage. Although time savings is a use-
ful objective for performance improvement, it may not necessarily
be valuable to the user experience. For example, previous work
has shown that even when word prediction may impair average
text entry speeds on mobile devices, users still prefer to use them
[50, 54]. As such, we also sought to optimize for intelligent sugges-
tion usage percentage. It was assumed that as long as a user applies
an intelligent suggestion, it leads to a preferred user experience.

Based on this, the gain function can be written as Equation 5.
The beneft function is approximated by the likelihood of users
responding to a correct suggestion. For simplicity, the probability
of users applying an incorrect suggestion is ignored so the cost
function is omitted.

Gain(t) = RR(t) · qt (5)

4.3 Gain Optimization
The value of the gain function Gain(t) changes over time such that
the model confdence value qt , the user-centric cost Cost(t), and

4

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 2: An overview of the COBO framework. COBO uses the probability estimates of a target prediction model as input and
quantifes the cost and beneft of the suggestion over time to produce a fnal gain function. The gain function is computed
using the beneft of displaying a suggestion minus its cost across the time axis. By applying an optimization strategy, the
framework determines when displaying a suggestion will be useful (gain > 0) and when the gain value (max(gain)) will be
maximized.

beneft Benefit(t) will be diferent as the task progresses and t
increases. In real applications, the target selection model does not
infer when a user starts the task (t = 0) or when the user fnishes the
task, so the task progress is unknown to the prediction model. One
solution is thus to infer t from the the real-time model confdence
value of the target prediction model qt because the model tends to
become more confdent in its predictions as the user reaches the
end of their task. Several prior studies have indicated that the rela-
tionship between t and qt may follow a sigmoid function [20, 36],
thus the implicit relationship between t and qt can be modelled as
t = д(qt). By doing this, the fnal objective function (Equation 6)
only depends on the real-time confdence output qt . The objective
function returns the qt that leads to the maximum gain. The re-
turned qt can be directly applied to determine a suggestion timing.
For example, if the optimized qt = 0.6, the system should display
an intelligent suggestion when the model confdence reaches 0.6.

argmax [Benefit(д(qt)) · qt − Cost(д(qt)) · (1 − qt)] (6)
qt ∈[0,1]

In practice, we obtain the mapping function t = д(qt) from a
training dataset Dtr ain . The purpose of Dtrain is to provide known
relationship between t and qt so that an optimization strategy
can learn how to handle new real-time qt values. In this work,
we created a dataset, Dtrain , wherein each data trial consisted of
known qt values for all t ∈ {1, ...,T }. Such a dataset can also be
generated by using a trained prediction model to produce qt for
each t ∈ {1, ...,T } of the feature data (e.g., hand movement [20]
or gaze information [36] over time). Once Dtr ain and the cost
and beneft functions are available, an optimization strategy can
calculate the expected gain by simulating the efect of enabling
intelligent suggestions at diferent qt (which correspond to a known
t) on the trials in Dtr ain , to consequently compute an optimal
solution over the training set. With the hypothesis that the training
data is a reasonable approximation of the unseen testing data, the
optimized solution can be generalized to real applications.

Since the objective is to fnd a qt or a set of qt s that can lead to
the maximum gain, various optimization methods can be applied

to solve this problem. In this work, two optimization strategies (i.e.,
Optimal Thresholding and Reinforcement Learning) were explored.

4.3.1 Optimal Thresholding (OT). The Optimal Thresholding strat-
egy aimed to obtain a single optimized model confdence threshold
that worked best on Dtrain . To achieve this aim, diferent conf-
dence values qt ∈ [0, 1] were tested and the qt that lead to the
highest expected gain on Dtr ain was selected.

4.3.2 Reinforcement Learning (RL). Rather than relying on a single
threshold for all trials, RL-based optimization strategies can pro-
vide “dynamic thresholds” based on the profle of each trial (e.g.,
the speed of increase of the model confdence value). This has the
potential to further boost the optimization performance compared
to Optimal Thresholding. Therefore, RL was applied to derive opti-
mal policies for intelligent suggestions that could reach the highest
gain on Dtr ain . Specifcally, our RL agents observed the incoming
probability estimations and explored diferent action sequences
(i.e., displayed an intelligent suggestion or not) to ultimately fnd
optimal action sequences that would lead to the maximum gain.
Additional details about the RL agents are in Section 6.3.

5 STUDY 1 - DATA COLLECTION
The primary goal of the frst study was to quantify the cost and
beneft of the two optimization objectives. To this end, data was
collected from participants while they responded to an intelligent
suggestion displayed at diferent timings. Specifcally, this study
focused on how much time it took participants to respond to a
correct suggestion, the usage percentage of the correct suggestion
over time, and the trial completion delay incurred by an incor-
rect suggestion. Two diferent task scenarios (manually-intensive
vs. mentally-demanding) and two diferent suggestion types (vi-
sual highlighting versus pop-up notifcation) were used to explore
whether these factors would lead to diferent participant responses.
We tested these factors because they could be the main determi-

nants of user behavior towards an intelligent suggestion.
5

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

- Task.PNG

Figure 3: Screenshots of the dense target selection task (left)
and the text matching task (right).

We used a two-session data collection study methodology. In the
frst session, baseline user performance (e.g., task completion time)
was collected while participants performed a dense target selection
task and a text matching task. The baseline user performance was
used to inform the suggestion timing interval for the second session.
In the second session, correct and incorrect suggestions within
the earlier determined timing intervals were displayed and the
resulting participant behavioral data were recorded. This enabled
the measurement of the costs and benefts of the suggestion.

We here prioritize high-level concepts and more relevant con-
tents in our presentation. We refer readers to Appendix A for more
detailed descriptions of the task scenarios and suggestion methods
and the signifcance testing results.

5.1 Participants and Apparatus
Sixteen participants (6 women and 10 men) were recruited and
provided informed consent on attending the study. Participant ages
ranged from 23 to 47 (mean = 36.6, std = 7.7, one participant did
not report their age). All participants had normal or corrected-to-
normal vision and all were right-handed. Twelve participants had
used VR devices for 0-5 hours per week, three used them for 5-10
hours, and one had never used a VR device before. As participation
was remote, participants received equipment to use in the study by
mail (i.e., an Oculus Quest 2, two Touch controllers, and a laptop
with an GTX 1070 graphics card) and met with the researchers
during a video call to complete the study.

5.2 Task Scenarios
Two task scenarios, representative of common interaction tasks that
are efortful to perform, were employed (see Figure 3). The dense
target selection task represented a manually-intensive task, where
participants needed to select a small object located at the center
of a cluster [46, 64]. The text matching task served as a mentally-

demanding task, where participants needed to fnd and select an
object with text that matched a target text. This task simulated
real-world, search-heavy scenarios like searching for ingredients
from a receipt, fnding street names on a map, or browsing through
a menu [52].

5.3 Suggestion Method
Two suggestion methods were used in the study—a highlighting
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fuorescent outline was displayed around the
suggested object (Figure 4 left). The highlighting suggestion was
in-situ, so it remained at the object location without following the

Figure 4: Highlighting notifcation (left) and pop-up sugges-
tion (right) used in the dense target selection task.

direction participants were looking. With the pop-up notifcation
suggestion, a suggestion window appeared at the bottom of the
participant’s current viewing direction (Figure 4 right) [57]. When
participants rotated their viewing direction, the pop-up notifcation
followed the viewing direction. For both suggestions, participants
could quickly access the suggested object via the Button A or dis-
card the suggestion by tilting the joystick to the right.

5.4 Study Design
The study included two sessions. The frst session used a within-
subject design with one factor, Task Type (dense target selection
and text matching), to collect baseline user performance. Each task
had 48 trials, with the frst 3 trials being discarded as practice trials.
The order of Task Type was counterbalanced. In total, 1440 trials
were recorded (= 16 participants × 2 task types × 45 repetitions).

The second session was conducted on a later day with the same
pool of participants after they had all fnished the frst session. It
also used a within-subject design but had three factors: Task Type
(dense target selection and text matching), Suggestion Method
(highlighting and pop-up notifcation), and Suggestion Mode (cor-
rect, incorrect, and no suggestion). A suggestion, if there was one,
was generated within a specifc timing interval ([0s, 3.1s] for the
dense target selection task and [0s, 7.6s] for the text matching task).
The suggestion timing was then randomly sampled within this in-
terval in each task to help us better understand how users respond
to suggestions over time. The mean task completion time from the
frst session was used as the maximum suggestion timing for the
second session, as users normally fnish the task manually before
these upper-bound times. The order of Task Type and Sugges-
tion Method were counterbalanced, and the order of Suggestion
Mode was randomized within each block. When a participant was
working on a certain task type with a suggestion method, a sugges-
tion may or may not appear and could be correct or incorrect. In
Session 2, each condition was repeated 32 times (2 practice trials).
In total, 5760 trials were recorded (= 16 participants × 2 task types
× 2 suggestion methods × 3 suggestion modes × 30 repetitions).

5.5 Study Procedure
The same procedure was used for both sessions of the study. Each
session started by introducing the two experimental tasks and sug-
gestion methods (only for session 2). In session 1, participants then
practiced the two tasks. In session 2, they practiced the scenarios
with and without the two suggestion types in each task. The sug-
gestion timing was shortened to 1/3 of the original intervals during
practice to ensure they saw a suggestion. They then started the
experiment where they were asked to complete each task as fast and
as accurately as possible, and were encouraged to use intelligent

6

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

suggestions if they were correct. They were given breaks between
blocks. After session 2, they completed a post-study questionnaire.

5.6 Results - Session 1
Before the baseline task completion time was computed, the data
was pre-processed to remove outliers that deviated more than three
standard deviations from the mean (mean ± 3std). This lead to 9
trials (1.25%) being discarded for the dense target selection task and
19 trials (2.64%) being discarded for the text matching task. A total
of 711 trails and 701 trials were left for analysis, respectively.

The completion times for both tasks followed log-normal distri-
butions. Using the maximum-likelihood estimation, the calculated
distribution parameters were µ = 1.13, σ = 0.25 for the dense
target selection task and µ = 1.88, σ = 0.60 for the text matching
task. Participants took an average of 3.21 seconds (std = 0.86) to
complete the dense target selection task and an average of 7.77
seconds (std = 4.6) to complete the text matching task. The overall
accuracies were 94.09% and 100%, respectively.

5.7 Results - Session 2
Pre-processing the session 2 data involved frst discarding trials
where participants completed the task before an intelligent sug-
gestion was displayed (i.e., 222 (7.71%) dense target selection trials
and 447 (15.52%) text matching tasks). Additionally, trials outside
mean ± 3std , were also removed (i.e., 30 (1.04%) dense target selec-
tion trials and 40 (1.39%) text matching trials). This left 2628 trials
and 2393 trials, respectively, for each task for analysis. The overall
accuracy for the dense target selection task was 95.09% and 99.28%
for the text matching task.

5.7.1 Response Time. Response time was defned the time elapsed
between the appearance of a correct intelligent suggestion and
a participant’s selection of that suggestion. We used multivari-

ate adaptive regression splines (MARS) to model the relationships
between suggestion timing and response time. MARS was used be-
cause it tries to fnd multiple linear regression lines to ft data while
balancing goodness-of-ft and simplicity. The linear regression lines
were connected through hinge functions (h(x − c) = max(0, x − c)
or h(c − x) = max(0, c − x) where c was a constant called knot)
to provide non-linear approximations of the data. The maximum
number of terms was set to two for the robustness of the model. The
resulting equations for the four conditions are summarized in Table
1. Figure 5A shows graphic illustrations of the relationship between
suggestion timing and response time of two example conditions .

5.7.2 Response Rate. Response rate was defned as the likelihood
that participants accepted a correct suggestion. We applied MARS to
model the relationship between the response rates and suggestion
timings directly. Specifcally, suggestion timing was used as a pre-
dictor and the accuracy of the suggestion was as the target variable
(0: incorrect, 1: correct). The regression results then approximated
the percentage of participants accepting a correct suggestion over
time (Figure 5B). Table 1 summarizes the corresponding MARS
models.

5.7.3 Delayed Time. Delayed time was the time delay that was
incurred due to incorrect suggestions. For a given trial, it was in-
feasible to record the task completion time both with and without

- Sample.PNG

Figure 5: Examples of the modeling results for response
time, response rate, and delayed time. The dots represent the
data trials, the black lines are the model ftting results pro-
vided by MARS, and the ribbons indicate 95% CI.

a suggestion (even if we repeated the trial, factors such as learning
and familiarity would difer). Therefore, this metric was computed
using the task completion time of each trial with an incorrect sug-
gestion minus the average task completion time in the correspond-
ing condition with no suggestion. The calculated distribution then
allowed us to determine the average delay an incorrect suggestion
would cause across diferent suggestion timings (Figure 5C). The
delayed time data was ft into the MARS model for each condition.
The results are summarized in Table 1.

5.8 Summary
Based on the data collection results, MARS models were able to sim-

ulate how participants would respond to an intelligent suggestion
at diferent timings (Table 1). The models resulted in reasonable
approximations of cost functions Cost(t) and beneft functions
Benefit(t) for the two objectives. The gain of displaying an intelli-
gent suggestion at timestamp t can thus be calculated via Equation
4 and 5. From the study results, it was also determined that the
gain functions for the four conditions (Task Type × Suggestion
Method) were quite diferent. Therefore, the four conditions were
handled diferently in later evaluations.

6 STUDY 2 - SIMULATION
The primary goal of the second study was to conduct a theoretical
evaluation of the two suggestion timing optimization strategies -
Optimal Thresholding (OT) and Reinforcement Learning (RL). To
achieve this, a mock target prediction model that generated various

7

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Table 1: Summarization of the modeling results from MARS (multivariate adaptive regression splines).

Task Type Suggestion Method Response Time Response Rate Delayed Time

Dense Target Selection Highlighting 0.90 + 0.83 · h(1.19 − x) 0.97 − 0.24 · h(x − 1.02) 0.01 + 1.08 · h(x − 1.96)
Dense Target Selection Pop-up Notifcation 1.13 + 0.13 · h(x − 1.60) 1.00 − 0.24 · h(x − 0.98) 0.57 + 2.25 · h(x − 2.52)
Text Matching Highlighting 2.91 0.90 0.66 + 0.84 · h(x − 1.29)
Text Matching Pop-up Notifcation 1.47 0.96 − 0.03 · h(x − 3.90) 4.94 − 0.61 · h(7.13 − x)

data trials (Dtr ain) during the two task scenarios was built. Simu-
Table 2: Testing results when using Optimal Thresholding

lations were run to estimate the gain of the optimization strategies. (OT) and Heuristic Thresholding (HT) regarding the dense

To constrain the search space, the study focused on applying high- target selection (DTS) task and the text matching (TM) task.
lighting suggestions for the dense target selection task, as it was
less intrusive, and using pop-up notifcations for the text matching Task Strategy (Th.) Time Saved/Usage% % Improved

DTS e
d

OT (0.47) 0.4073s (0.3202s) 39.39%
DTS HT (0.85) 0.2922s (0.3645s) -

TM

T
i
m
e
 s
a
v

OT (0.98) 1.6211s (1.7946s) 260.89%
TM HT (0.50) 0.4492s (1.1440s) -

DTS OT (0.81) 65.69% (18.30%) 0.36%
DTS

U
s
a
g
e
 %

HT (0.85) 65.45% (20.42%) -

TM OT (0.96) 87.17% (18.53%) 51.52%
TM HT (0.50) 57.53% (15.63%) -

task, as it led to quicker responses.
The following subsections frst present the mock target predic-

tion model that was used to generate Dtr ain and then introduce the
four simulation experiments that were undertaken. In Simulation
1, the performance of OT was bench-marked for the time saved for
participants versus the suggestion usage percentage. The perfor-
mance of the baselines that leveraged the design heuristics were
also used to determine thresholds. In Simulation 2, RL was applied
for optimization. In Simulation 3, multi-objective optimization (i.e.,
time saved and usage percentage) was run with OT.

6.1 Target Prediction Model Mock-up
As most models’ prediction accuracy values seem to follow sigmoid
curves over task progression (e.g., [2, 15, 20, 36]), we simulated a
similar model by mimicking the observed sigmoidal relation be-
tween accuracy and time to generate Dtr ain . Specifcally, for each
trial, we frst sampled trial length T based from the log-normal dis-
tribution found in the frst session of Study 1 (Figure 6A). Then, a
sigmoid function of task progression regarding prediction accuracy
was computed (Figure 6B-C) and deviations (i.e., spikes and dips)
were added to the sigmoid function (Figure 6D). More details of this
mock-up target prediction model can be found in Appendix B.1.

The mock-up target prediction model was limited in that it only
mimicked the appearance of the confdence curves, so it did not
capture the inherent decision information of a real target predic-
tion model. However, if the optimization strategies worked with
a pseudorandom model, then they may also work with an actual
target prediction model. Next, we present simulation results based
on 30,000 trials generated by the mock-up prediction model for
each task scenario. The trials were separated such that 90% were
used for training and 10% were used for testing. Among the training
data, 10% was used for hold-out validation. We present only testing
results in the paper while readers can fnd the validation results in
Appendix B.2.

6.2 Simulation 1: Optimal Thresholding
The Optimal Thresholding (OT) strategy sought to learn an opti-
mized confdence threshold from the dataset that would lead to the
best gain. To achieve this, diferent confdence values were tested
(qt ∈ [0, 1], 0.01 per step) and the corresponding gain was calcu-
lated using Equation 4 and 5 from the frst study. Figure 7 presents
two examples of how the gain in the time saved condition changed

as the confdence threshold qt varied. The optimized threshold was
quite diferent for the dense target selection task (thres = 0.47)
compared to the text matching task (thres = 0.98).

To benchmark the performance of OT, we picked a threshold
that worked the best on the validation dataset and produced the
corresponding results on the testing dataset. The baseline (i.e.,
Heuristic Thresholding) for the dense target selection task was
determined to be thres = 0.85, which was directly appropriated
from a similar point-and-select task in the literature with sigmoidal
prediction curves [20]. The baseline for the text matching task
was thres = 0.50, which was used to predict participant selections
in a search-intensive task like our text matching task (i.e., users’
intended ingredients in a sandwich-making task [36]).

From the results, the optimized threshold was found to save 0.1
seconds more than the baseline in the dense target selection task
(around 40% of improvement) and 1 second more than the baseline
in the text matching task (around 260% of improvement; Table
2). The optimized threshold also led to an 87% suggestion usage
percentage in the text matching task (around 50% of improvement).
The optimized thresholds were quite diferent for the dense target
selection task for the time saving optimization (thres = 0.47) and
usage percentage optimization (thres = 0.81), while being similar
for the text matching task (0.98 vs. 0.96).

6.3 Simulation 2: Reinforcement Learning
RL can potentially provide tailored solutions based on the target
prediction confdence profle of each trial (e.g., the speed of in-
crease of the model confdence value) by fnding an appropriate
threshold to display suggestions that works for that specifc profle.
To achieve this, model-free RL techniques were leveraged because
there was a lack of transition dynamics models for our problem.
Thus, the model-free RL agents observed the model confdence esti-
mates qt from a target prediction model trained on Dtr ain , which

8

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 6: The trial generation process for the mock-up target prediction model. (A) The model frst computes the trial length
based on the log-normal distribution found in Study 1 for task completion time. (B) The model forms a sigmoid function of
task progression with respect to prediction accuracy. (C) The sigmoid function varies within a predefned region (the dashed
lines indicate the 95% CI). (D) The model adds deviations (i.e., spikes and dips) to the trial.

Figure 7: The expected gain for maximizing time savings for
participants (y-axis) when using diferent confdence thresh-
olds (x-axis) based on the validation dataset. The unit of gain
is a timestamp, where the time saved in seconds equals 0.02
· timestamps. Dashed lines represent mean ± std .

were replayed multiple times to the agent. On each trial, the agent
explored diferent action sequences (i.e., displayed an intelligent
suggestion or not) to ultimately fnd the optimal action sequence
for a given qt trajectory that would lead to the maximum gain.

6.3.1 Problem Formulation. The key elements of the RL agents
were:

• Observation: For a specifc timestamp t , the agent received the
following observation {p1,p2, ...,pm , dt }. The probability values
{p1, p2, ...,pm } were the model confdence values produced by
the target prediction model over time. The integer m was the
memory size of the agent. The list acted like a frst-in-frst-out
queue where pm represented the most recent confdence value
provided by the prediction model and p1 represented the least re-
cent. The foat dt recorded the last timestamp when a suggestion
was displayed.

• Action: The agent could take the following two actions based
on the observation {display, not display}. The display action
represented displaying an intelligent suggestion, so dt was up-
dated to the current timestamp t . The not display action hid the
suggestion.

• Reward: Three reward settings were used to train the RL agents.
t

The frst was r1, where r = Gain(t) if a suggestion was dis-
1

t
played at t , otherwise r = 0. The second reward setting, r2,

1

sought to solve the reward sparsity issue in r1. Specifcally, re-
ward shaping was performed when the suggestion wasn’t dis-

t
played: r = Gain(t) if a suggestion was displayed at t , otherwise

2
tr = −k · pm . We used a hyper-parameter k to penalize the ac-
2

tion of not displaying any suggestion. An agent received more
penalties if it did not display a suggestion when the model con-

t
fdence was high (pm). The third reward r

3 also leveraged the
beneft of dense rewards, but removed the agents’ reliance on
the penalty factor k , which may have negative impacts on true

t t −1 0
reward maximization. Here, r = Gain(t)−r (where r = 0) at

3 3 3

a timestamp t . This essentially rewarded the agent based on how
good it performed on a particularly timestamp t, by computing
the contribution of agent’s action at t towards the gain. More
details can be found in Appendix B.1.4.

• Episode End Criteria: The current episode ended if t was larger
than the maximum length of the trial T , or dt was larger than 0
(which meant a suggestion was displayed).

• Initialization: pm was initialized to the frst confdence value pro-
duced by the target prediction model, while all other probability
values were set to 0. dt was initialized to 0.

6.3.2 Methodology. OpenAI Gym [16] and Stable Baselines [34, 56]
were used to build and train the RL agents. Our experimentation
demonstrated that PPO2 with MLP policies was a lightweight and
efective solution and ACER with LSTM was powerful but may
take longer to train. We thus used these two strategies for fnal
benchmarking. Since training these RL agents consumes a lot of
resources, for demonstration purposes, we only optimized agents
for the time saving objective and one agent for the usage percentage
objective. More training details can be found in Appendix B.1.5.

6.3.3 Results. The results showed that RL agents could provide
around 40% of improvement in the dense target selection task and
260% of improvement in the text matching task as compared to
Heuristic Thresholding (Table 3). Compared to the results from
Section 2, OT and RL led to very similar performance improvement
in the two task scenarios; while RL did produce dynamic thresholds
for each trial. We will return to this in later sections (Section 7.2.3
and 8.2).

6.4 Simulation 3: Multi-Objective Optimization
So far, our approach focused on optimizing a single objective e.g.,
time saved or usage percentage. However, designers may need to

9

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Table 3: Testing results of RL regarding regarding the dense
target selection (DTS) task and the text matching (TM) task.

Task Strategy Time Saved % Improved

DTS PPO-MLP 0.4087s (0.3285s) 39.87%
DTS ACER-LSTM 0.4084s (0.3362s) 39.77%
TM PPO-MLP 1.6050s (1.7877s) 257.30%
TM ACER-LSTM 1.5671s (1.7328s) 248.86%

Task Strategy Usage% % Improved

TM PPO-MLP 87.31% (18.05%) 51.76%

Figure 8: Optimizing both the time saved for participants
and the suggestion usage percentage with Pareto Frontier-
based multi-objective optimization.

fnd optimal decisions in the presence of trade-ofs between two or
more conficting objectives (e.g., minimizing task completion time
and maximizing accuracy) in many applications. Multi-objective
optimization is useful in such settings, when more than one ob-
jective function need to be optimized simultaneously. Therefore,
we explored Pareto Frontier-based multi-objective optimization
technique [45, 48], which generates a set of acceptable trade-of
optimal solutions, to optimize the two objectives—time saved and
suggestion usage percentage simultaneously.

A given condition is called Pareto optimal if one dimension
(i.e., objective) could not be improved without worsening other
dimensions (i.e., objectives). In our case, we computed the gain
of timing saving and usage percentage for each condition qt and
plotted them on a two dimensional xy-plane (Figure 8). A Pareto
optimal point was identifed if there was no point on the plane
that was better in both x and y dimensions. The corresponding
threshold qt of the point was then retraced.

Following the above method, we identifed thresholds that could
optimize both objectives simultaneously. Thirty-two Pareto op-
timal values were identifed for the dense target selection task
(Thres = 0.47, 0.50 − 0.78, 0.80 − 0.81) and three Pareto optimal val-
ues were identifed for the text matching task (Thres = 0.96 − 0.98).
The results indicated that the time saved and usage percentage
objectives were somewhat conficting in the pointing task but not
in the text matching task. Thus COBO can help practitioners who
want to trade-of various optimization objectives.

6.5 Summary
These simulation experiments demonstrated diferent facets of op-
timization strategies using COBO. The experiments showed how,
theoretically, OT and RL were both efective at determining the

optimal timings at which to show an intelligent suggestion, while
the performance diference between the two strategies was small.
We found that for the dense target selection task, an intelligent
suggestion should be displayed when the model confdence reached
0.47 for optimizing time saved for users and 0.81 for optimizing
suggestion usage percentage. For the text matching task, an intelli-
gent suggestion should be displayed when the model confdence
reached around 0.96-0.98 for optimizing both objectives.

It was also found that a non-optimized threshold could lead to
much worse performance (e.g., 1 second longer in task completion
time and a 30% smaller suggestion usage percentage in the text
matching task) compared to an optimized strategy based on COBO.
Not all intelligent suggestions were shown to be benefcial, however.
Displaying suggestions early in the text matching task lead to a
negative gain in terms of task completion time.

7 STUDY 3 - VALIDATION
The third study consisted of two empirical user experiments of
COBO because of the high number of conditions. The frst one com-

pared the time saved and suggestion usage % for Optimal Thresh-
olding (OT) and Heuristic Thresholding (HT), fnding that OT saved
participants more time and led to a higher suggestion usage percent-
age in the text matching task. The second experiment compared
OT and RL strategies and found that OT and RL lead to similar
performance.

7.1 Validation 1 - Optimal Thresholding vs.
Heuristic Thresholding

The goal of validation experiment 1 was to empirically verify the
efectiveness of Optimal Thresholding in comparison with Heuristic
Thresholding. We also included a No Suggestion condition to help
contextualize the impact of suggestion conditions relative to when
the interface ofers no suggestions.

7.1.1 Participants and Apparatus. Another 26 participants were
recruited (i.e., fourteen women, eleven men, and one non-binary).
Their ages ranged from 22 to 65 (mean = 36.1, std = 12.8). All
participants had normal or corrected-to-normal vision and were
right-handed. 23 participants had used VR devices 0-5 hours per
week, two used 5-10 hours per week, and one had never used any
VR device before. The same apparatus was used as in the frst study.

7.1.2 Methodology. Participants experienced both task scenarios
(i.e., dense target selection and text matching). There were four con-
ditions (Strategy) for the dense target selection task: optimized
thresholds for time saved (TS, thres = 0.47), optimized thresholds
for suggestion usage percentage (UP, thres = 0.81, which was close
to HT thres = 0.85 from a selection task [20]), balanced optimiza-

tion for both objectives (BA, thres = 0.64), and no intelligent sug-
gestions (NS). Similar to Study 2, we used highlighting suggestions
for the dense target selection task.

There were three conditions (Strategy) for the text match-

ing task: balanced optimization based on OT (BA, thres = 0.97),
HT baseline (HT, thres = 0.50 from a search-heavy, mentally-

demanding task [36]), and no intelligent suggestions (NS). The time
saved (thres = 0.98), suggestion usage percentage (thres = 0.96),
and balanced (thres = 0.97) optimization conditions were combined

10

https://0.96-0.98

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

in this task as the thresholds were very close. We used pop-up no-
tifcations for the text matching task. This design enabled us to
investigate multiple factors while keeping the study size reasonable
at seven experimental conditions.

48 trials of predictions were generated for each task scenario
using the mock-up target prediction model from Study 2. Each trial
contained the probability of the model making a correct suggestion
(i.e., model confdence) over a fxed period of time. The diferent
thresholding strategies were then applied to each trial to decide the
timing of showing a suggestion. The 48 trials were fxed across con-
ditions to minimize the variances caused by the target prediction
model. The average global centerline of the 48 trials followed a sig-
moid curve. The fnal correctness of the prediction (i.e., a predicted
candidate which participants visually perceived) was determined
based on the confdence value when displaying a suggestion. For
example, if a strategy decided to display the suggestion when the
confdence value was 0.6, the fnal prediction then had 60% chance
to be correct. Among the 48 trials, the frst 3 trials were treated as
practice trials. In total, 8190 trials were recorded (= 26 participants
× 7 conditions × 45 repetitions) during this experiment.

A similar experimental procedure was employed as the frst study.
However, in this study, after completing each condition, participants
were asked to complete a questionnaire that had three 7-point Likert
scale questions probing easement, physical workload, and mental
workload. The order of the task scenarios was randomized and the
conditions within the scenarios were counterbalanced. The order
of the formal trials were also randomized, however, the practice
trials were always the same.

7.1.3 Analysis and Results. While data was initially collected for 26
participants, P1, P14, P19, and P26 were excluded as they never used
intelligent suggestions in one or both of the tasks. The trials where
participants had fnished before the suggestion appeared (i.e., 169
(3.61%) dense target selection trials and 518 (14.76%) text matching
tasks) were removed from the dataset. Because a mock-up target
prediction model was used, there could have been trials where
participants fnished earlier than the pre-determined time period.
Thus, only trials where an intelligent suggestion was displayed
were considered. We also removed outliers (mean ± 3std) (i.e., 45
(0.96%) dense target selection trials and 42 (1.20%) text matching
tasks). These pre-processing steps resulted in 6156 trials remaining
for analysis (i.e., 3746 trials for dense target selection and 2410 trials
for text matching). The trials were later averaged across participant
and condition. The overall accuracy was 93.14% for the dense target
selection task and 98.98% for the text matching task.

For the dense target selection task, a linear mixed model with
arcsinh transformation (as determined by the bestNormalize pack-
age) suggested that Strategy had a signifcant main efect on task
completion time (F = 5.02, p = .003). A post-hoc analysis with
Bonferroni correction showed that the completion time in NS was
signifcantly longer than BA (p = .002), and marginally signifcant
longer than TS (p = .084) and UP (p = .135) (all other p > .887).
Another linear mixed model with exp transformation indicated that
Strategy had a signifcant main efect on suggestion usage percent-
age (F = 65.69,p < .001). Post-hoc analysis suggested that usage
percentages of UP (p = 0.056) and BA (p = 0.140) were marginally
signifcant higher than TS. See Figure 9A-B for an overview.

For the text matching task, a linear mixed model with sqrt trans-
formation suggested that Strategy had a signifcant main efect
on task completion time (F = 59.79, p < .001). A post-hoc analy-
sis showed that participants performed signifcantly faster in BA
than HT (p < .001) and NS (p < .001). HT was also found to have
a signifcantly shorter task completion time than NS (p < .001).
Another linear mixed model with exp transformation suggested
that Strategy had a signifcant main efect on suggestion usage
percentage (F = 420.45,p < .001). A post-hoc analysis indicated
that BA had a signifcantly higher suggestion usage percentage
than HT (p < .001). See Figure 9C-D for an overview.

For the subjective questions, pair-wise comparisons (with Bon-
ferroni correction) identifed that BA led to lower mental workload
(p = .012), and were possibly easier to use (p = .053), than NS
in the text matching task. This suggests that using an intelligent
suggestion could reduce workload and improve user experience.

7.1.4 Discussion. The empirical results demonstrated the efective-
ness of the COBO optimization framework for the text matching
task. As expected from the theoretical evaluation, the optimized
condition (BA) led to shorter task completion times and higher
suggestion usage % than the baseline conditions (HT and NS).

The benefts due to COBO were more obvious in the text match-

ing task compared to the dense target selection, mainly because the
dense task was very rapid and, as such, it was more difcult to have
substantial diferences in suggestion timings (thus their efect on
time saved for users and suggestion usage percentage). However,
the patterns across the two tasks were consistent. The signifcantly
higher suggestion usage in text matching, in particular, could be
impactful in lowering user’s efort, which is suggested in the lower
mental load scores of the balanced optimization.

7.2 Validation 2 - Optimal Thresholding vs. RL
The primary goal of the validation experiment 2 was to compare
Optimal Thresholding (OT) vs. RL strategies for time saved and
suggestion usage percentage. Based on the fndings from validation
1, in this study, only the text matching task was used, as it was more
likely to lead to verifable performance diferences in an empirical
user study than the dense target selection task.

7.2.1 Participants and Apparatus. 12 participants (6 women, 5 men,
and 1 non-binary) who had participated in the frst validation
study were recruited for the second validation study. Since the
time interval between validation experiment 1 and 2 was more
than a week and the strategy diferences were hard to verify by
seeing only the suggestion itself, it was presumed to be reason-
able to reuse participants. Participants’ age ranged from 22 to 63
(mean = 35.9, std = 10.9). The same apparatus were used as in
validation study 1.

7.2.2 Methodology. The study employed a 2 × 2 within-subject
design: Objective (time saved and suggestion usage percentage) ×
Strategy (OT and RL). Based on Study 2, thres = 0.98 was used for
time saved optimization and thres = 0.96 was used for suggestion
usage percentage optimization. The PPO-MLP agent from Study 2
was used.

The same 48 trials were used to generate the corresponding sug-
gestion timing in each condition, and a similar study protocol was

11

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Figure 9: Results of average task completion time and suggestion usage percentage in the frst validation experiment of Study 3.
The four conditions in the dense target selection task were time saved optimization (TS), usage percentage optimization (UP),
balanced optimization (BA), and no suggestion (NS). The three conditions in the text matching task were balanced optimization
(BA), Heuristic Thresholding (HT), and no suggestion (NS). The error bars represent mean ±std . ** means p < .01 and *** means
p < .001.

employed as validation study 1. In total, 2160 trials were collected
(= 12 participants × 2 objectives × 2 strategies × 45 repetitions).

7.2.3 Analysis, Results, and Discussion. After removing outliers
(mean ± 3std , 11 trials, 0.51%) and trials where participants fn-
ished before the suggestion appeared (709 trials, 32.8%), 1440 trials
remained for analysis. The overall accuracy was 99.59%.

A linear mixed model with sqrt transformation was not able to
identify that Strategy had a signifcant main efect on task com-

pletion time (F = 0.18, p = .674). Another linear mixed model with
Yeo-Johnson transformation was not able to identify that strat-
egy had a signifcant main efect on suggestion usage percentage
(F = 0.74,p = .397). Strategy was not shown to have signifcant
main efects on any of the subjective scales. In summary, our results
did not fnd any signifcant diferences between OT and RL that
lead to identifable diferences in the optimization metrics (Figure
10A-B).

We were further interested to see whether RL proposed diferent
suggestion timings than OT in the 48 trials. For the time saved
optimization, RL and OT led to a similar suggestion timing (∆ <
0.1s) in most cases (72.9%). For 16.8% of the cases, the diference
between them was > 0.5s. For usage percentage optimization, there
were 68.8% trials where RL and OT led to a similar suggestion
timing (∆ < 0.1s) and 8.3% trials that resulted in diference > 0.5s.
In the trials with diference >0.5s, RL always attempted to display
an earlier suggestion to save more time for users. On average, RL
showed the suggestions 0.79s (std . = 0.38s) earlier in these trials as
compared to OT.

Figure 10C-D demonstrate two examples wherein RL fnds dif-
ferent thresholds than OT. RL strategy seems to be observing the
trend of the model confdence curve and displaying a suggestion
once the curve is likely to plateau in the near future. Figure 10C
shows a trial where RL saved 0.31 less than OT on average, and
Figure 10D shows a trial where RL saved 1.79s more. Thus, RL is
certainly able to learn a strategy that results in dynamic thresholds
that match OT performance on average, but it remains to be seen
if/when RL may be able to outperform optimal thresholds.

8 DISCUSSION
We’ve conducted a series of three studies that demonstrated the
theoretical and empirical efectiveness of our COBO (cost-beneft
optimization) framework for suggestion timing optimization. In
this section, we further refect on our experiences in terms of the
cost and beneft quantifcation of the two optimization objectives
and the strength of RL as an optimization strategy as compared to
Optimal Thresholding. We also discuss the generalizability of the
framework to other applications and the limitations of our studies.

8.1 Optimization Objectives
Our work demonstrates a successful optimization of two objec-
tives: time saved by users and suggestion usage percentage. The
COBO framework is designed to help optimize various objectives,
either individually or simultaneously, as long as a cost and beneft
quantifcation method can be determined. We used data collected
from participants (Study 1) to construct cost and beneft functions
with variables such as response times, response rates, and delayed
times. The validation studies indicated that the constructed cost and
beneft functions were good approximations of the ground truth.

The time savings in our case, even though signifcant, are small
especially in the dense target selection task. However, existing work
has shown that users prefer intelligent suggestions despite nega-
tive time costs [54] because they were considered less physically
demanding and efortful. The fact motivated us to quantify the
beneft of intelligent suggestions beyond performance improve-

ments. While usage percentage is an efective proxy that assumes
that higher suggestion usage is always benefcial for a user to
lower their interaction friction [38], a highly promising avenue for
future work is in optimizing directly for efort, physical and mental-

demand especially as we become better at real-time estimations of
quantities like arm fatigue [18] and satisfaction [24, 53].

For simplicity, we omitted some rare conditions during cost-
beneft quantifcation. For example, we excluded the trials where
users mistakenly triggered the selection of an incorrect suggestion.
Such instances were very uncommon (0.4% overall) and did not
signifcantly impact the suggestion usage percentage or the time

12

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 10: Results of average task completion time (A) and suggestion usage percentage (B) in the second validation experiment
of Study 3. The four conditions were usage percentage optimization with RL (UP-RL) and Optimal Thresholding (UP-OT) and
time saved optimization with RL (TS-RL) and Optimal Thresholding (TS-OT). The error bars represent mean ± std . (C) and (D)
show example trials where RL and Optimal Thresholding (OT) yielded noticeably diferent suggestion timings. On average,
RL saved 0.31s less in (C) and 1.79s more in (D) than OT.

cost of an incorrect suggestion. However, future endeavors can ex-
tend our framework to consider mistaken triggering of an incorrect
suggestion especially if those instances are not rare and/or if they
require a costly recovery from the mistake [12, 40]. One simple way
might be to consider modeling this as a constant time cost (e.g.,
recovery time).

8.2 RL as an Optimization Strategy
We found that RL was able to learn a successful strategy and produce
dynamic thresholds across trials. However, RL’s dynamic thresholds
weren’t able to outperform the single optimal threshold on average
in our simulation and validation study.

As we report, there were a small, but signifcant percentage of
trials where RL’s suggestion timing difered by >0.5s compared
to OT. However, we did not fnd any big discernible patterns in
these trials compared to others. It will be worth investigating task
contexts where the percentage of such trials is higher. Another
reason for RL’s similar performance to OT might be that the room
of improvement for RL was small, as Optimal Thresholding (OT)
already performed very well. The analysis demonstrated that even
the theoretical maximum of a perfect agent (i.e., agent that maxi-

mizes the gain by knowing the whole trial profle) can lead to no
larger than 0.18s and a 4.3% improvement over OT in task comple-

tion time and suggestion usage percentage, respectively, with our
dataset. It will be interesting to see if there are contexts where OT
does not achieve performance close to the theoretical maximum.

We can propose two variables to explore here that may help
diversify our task context. First, is to look at trials with durations
that are much more variable. Looking at the validation study data
more closely, we found a weak correlation between the time-saving
diferences (RL − OT) and trial length (R2

= 0.10) which indicated
that the RL agent saved more time than OT in longer duration trials.
Second, is to look at target prediction models that are not sigmoidal
in nature (as an example, models that start with a high prior con-
fdence using earlier user activity), and may follow patterns that
cannot be easily captured using a single OT.

RL may also prove to be useful in scenarios where an interface
wants to show more than one intelligent suggestion and the sug-
gestions get updated based on users’ behavior. It might be hard
to directly apply OT in these scenarios. Also, in case a designer
wants to enable diferent suggestion types within the same task

(example, both highlighting and pop-up notifcation), an RL agent
could choose the most appropriate suggestion type based on the
gain of those options at diferent timings. An interesting area of
exploration is the long-term use of such intelligent suggestion in-
terfaces. A user may form an expectation of how well the model
performs, which can in turn infuence their response behavior, thus
changing the cost-beneft quantifcation over time. An online RL
agent may also prove useful in such cases.

8.3 Applications
This research has demonstrated the application of COBO in two
task scenarios (dense target selection and text matching) and two
objectives (minimizing user task completion time and maximiz-

ing intelligent suggestion usage). The two tasks and suggestion
types were intentionally chosen to be representative of popular use
cases. The dense target selection task aims to simulate physically-
demanding tasks where users need to select objects in cluttered
environment [46, 64], and the text matching task mimics real-world
search-heavy scenarios such as searching for ingredients from a re-
ceipt [25, 63]. Object highlighting and pop-up notifcation are both
common visualizations to inform users about system events [57].
Additionally, in Appendix B.3, we also present results on success-
fully applying COBO on a dataset from the literature which records
hand movement trajectories when reaching virtual objects at difer-
ent locations. We further envision COBO being extensible to other
tasks and facilitation.

8.3.1 Extending to other tasks. The framework can be retrained for
other applications that want to leverage intelligent predictions us-
ing target prediction models that rely on hand, head, gaze, and other
contextual information [31, 70] in selection tasks such as pointing,
visual search, and text-entry. By following the COBO framework,
practitioners may choose diferent models, objectives, and cost-
beneft quantifcation methods which are tailored for their applica-
tions. Overall, based on our user-centric computational framework,
designers are more likely to provide intelligent suggestions that
support their intended goals, rather than leading to unexpected
outcomes [50, 54].

8.3.2 Extending to other facilitation. COBO’s framework can also
be extended to facilitate techniques other than intelligent sugges-
tions such as expanding [44] or auto-selecting [1, 4] a predicted

13

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

target, as well as for more than one suggestions simultaneously or
sequentially.

8.4 Target Prediction Model
The current research builds on certain assumptions to simplify the
complex problem space. One assumption is the use of a mock-up
target prediction model, as we wanted to simulate a highly repre-
sentative prediction model, rather than choosing one at random.
Therefore, we carried out a literature survey to extract the com-

monalities among prediction models and then created a simulation
from those commonalities (Section 6.1). However, our inspirations
were from human behavior models of target reaching [20] and
searching [36] where the model prediction accuracy was typically
high during the later stage of the task because the selection indi-
cator (e.g., hand or gaze point) was “approaching” or “almost on”
the target and the user was just “fne-tuning” the selection of the
target. For example, in the text matching task, we imagined that
the gaze direction would reach the targeted object way before the
controller-based manual pointing selection (i.e., the model has very
high confdence based on gaze features no matter the position of the
hand pointer), as Huang et al. [36] could correctly anticipate the in-
tended object through gaze sequences 1.8s before a speech request.
We acknowledge that there are other types of models that may not
have such rich features. Future work can deploy this framework
to any prediction model to test it on new use cases. This, however,
did mean that the intelligent suggestions were not delivered dy-
namically based on a user’s behaviour. For experimental control, it
was important that this be the case while developing and validating
the COBO framework. However, future research should investigate
how the framework responds to a real prediction model.

One additional consideration of the current approach is that it re-
quires a dataset of model confdence curves to calculate user-centric
costs and benefts over time. In a real scenario where a designer
has a target prediction model and its training dataset, the train-
ing dataset should contain trials with necessary features (e.g., user
behavior data, completion times) so the designer can directly use
those for confdence curve generation and cost-beneft computation
(see Appendix B.3 for an example). In a condition where the feature
dataset is missing, another possible solution is to apply models to
simulate user behavior. During the planning phase of this research,
our initial idea was to use existing computational models (e.g., min-

imum jerk model) to generate a large volume of user behavior data.
However, we encountered two challenges. First, we did not know
how users would behave according to correct/incorrect suggestions
that appeared at diferent timings (so it was hard to incorporate
this element into the model). Second, a user behavioral model for
the text matching scenario is still largely underexplored (unlike
bio-mechanical behavior modeling for pointing and reaching as in
Cheema et al. [18] and Fischer et al. [23]). Therefore, we decided
to collect new data from real users. However, we do believe using
model-generated datasets for user cost-beneft quantifcation can
be helpful in the future with more advances in the feld.

9 CONCLUSION
Predictive systems are helpful ways to lower input friction and im-

prove user experiences in current VR/AR systems [38]. Specifcally,

selection facilitation techniques that leverage target prediction mod-

els can alleviate the need for manual pointing and visual search,
and can potentially lead to quicker, easier, and more comfortable
interaction. While current target prediction models only ofer which
target a user intends to select, we built a framework (COBO) that
helps determine when an intelligent suggestion should be displayed
to maximize its benefts.

COBO is a computational framework that determines the opti-
mal timing of an intelligent suggestion for each interaction based
on user-centric costs and benefts. In a set of studies, we demon-

strated that COBO is efective at determining the optimal timing
of intelligent suggestions. The frst study focused on measuring
and quantifying the costs and benefts of an intelligent suggestion
displayed at diferent timings when trying to satisfy two objectives
(i.e., time saved for users and suggestion usage percentage) dur-
ing two tasks (i.e., dense target selection and text matching). We
then run simulations with two optimization strategies (i.e., Optimal
Thresholding and RL) for single- and multi-objective optimizations.
We found both Optimal Thresholding and RL led to better perfor-
mance compared to heuristic-based thresholding approaches. For
example, both optimization strategies led to around 40% improve-

ment in terms of task completion time in the dense target selection
task and 260% improvement in the text matching task. We also
demonstrated the efectiveness of COBO for multi-objective opti-
mization. The third study contained two validation experiments
that compared Optimal Thresholding, RL, heuristic-based thresh-
olding, and no suggestion conditions. The experimental results
suggested that COBO-based optimization strategies led to shorter
task completion times and higher suggestion usage percentages,
and were preferred by participants in the text matching task when
compared to baselines.

From both theoretical and empirical perspectives, we showed
that an optimized strategy based on COBO can perform signif-
cantly better than non-optimized heuristic-based approaches in
maximizing the time saved by users and increasing suggestion us-
age percentages. Overall, we envision the introduced framework
will unlock efective intelligent suggestions, which will beneft
future predictive systems.

ACKNOWLEDGMENTS
We thank Ben Lafreniere, Kashyap Todi, and many others from
Meta Reality Labs Research for insightful discussions. We also
thank Michael Frederick and other team members for their help
with user studies. Icons in fgures are from Flaticon.com and 105
Colorful 2D Planet Icons in Unity Asset Store.

REFERENCES
[1] Bashar I. Ahmad, Patrick M. Langdon, Simon J. Godsill, Richard Donkor, Re-

becca Wilde, and Lee Skrypchuk. 2016. You Do Not Have to Touch to Select:
A Study on Predictive In-Car Touchscreen with Mid-Air Selection. In Proceed-
ings of the 8th International Conference on Automotive User Interfaces and In-
teractive Vehicular Applications (Ann Arbor, MI, USA) (Automotive’UI 16). As-
sociation for Computing Machinery, New York, NY, USA, 113–120. https:
//doi.org/10.1145/3003715.3005461

[2] Bashar I. Ahmad, Patrick M. Langdon, Simon J. Godsill, Robert Hardy, Eduardo
Dias, and Lee Skrypchuk. 2014. Interactive Displays in Vehicles: Improving
Usability with a Pointing Gesture Tracker and Bayesian Intent Predictors. In
Proceedings of the 6th International Conference on Automotive User Interfaces
and Interactive Vehicular Applications (Seattle, WA, USA) (AutomotiveUI ’14).

14

https://doi.org/10.1145/3003715.3005461
https://doi.org/10.1145/3003715.3005461
https://Flaticon.com

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Association for Computing Machinery, New York, NY, USA, 1–8. https://doi.
org/10.1145/2667317.2667413

[3] Bashar I Ahmad, James Kevin Murphy, Simon Godsill, Patrick M Langdon, and
Robery Hardy. 2017. Intelligent interactive displays in vehicles with intent
prediction: A Bayesian framework. IEEE Signal Processing Magazine 34, 2 (2017),
82–94. https://doi.org/10.1109/MSP.2016.2638699

[4] Bashar I Ahmad, James K Murphy, Patrick M Langdon, Simon J Godsill, Robert
Hardy, and Lee Skrypchuk. 2015. Intent inference for hand pointing gesture-based
interactions in vehicles. IEEE transactions on cybernetics 46, 4 (2015), 878–889.
https://doi.org/10.1109/TCYB.2015.2417053

[5] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international conference on knowl-
edge discovery & data mining. 2623–2631.

[6] Ferran Argelaguet and Carlos Andujar. 2013. A survey of 3D object selection
techniques for virtual environments. Computers & Graphics 37, 3 (2013), 121–136.
https://doi.org/10.1016/j.cag.2012.12.003

[7] Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh,
and George Fitzmaurice. 2017. Experimental Evaluation of Sketching on Surfaces
in VR. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery,
New York, NY, USA, 5643–5654. https://doi.org/10.1145/3025453.3025474

[8] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866 (2017).

[9] Christian Arzate Cruz and Takeo Igarashi. 2020. A Survey on Interactive Rein-
forcement Learning: Design Principles and Open Challenges. In Proceedings of
the 2020 ACM Designing Interactive Systems Conference (Eindhoven, Netherlands)
(DIS ’20). Association for Computing Machinery, New York, NY, USA, 1195–1209.
https://doi.org/10.1145/3357236.3395525

[10] Takeshi Asano, Ehud Sharlin, Yoshifumi Kitamura, Kazuki Takashima, and Fumio
Kishino. 2005. Predictive Interaction Using the Delphian Desktop. In Proceedings
of the 18th Annual ACM Symposium on User Interface Software and Technology
(Seattle, WA, USA) (UIST ’05). Association for Computing Machinery, New York,
NY, USA, 133–141. https://doi.org/10.1145/1095034.1095058

[11] Marc Baloup, Thomas Pietrzak, and Géry Casiez. 2019. RayCursor: A 3D Pointing
Facilitation Technique Based on Raycasting. Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300331

[12] Nikola Banovic, Tovi Grossman, and George Fitzmaurice. 2013. The Efect of
Time-Based Cost of Error in Target-Directed Pointing Tasks. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Paris, France)
(CHI ’13). Association for Computing Machinery, New York, NY, USA, 1373–1382.
https://doi.org/10.1145/2470654.2466181

[13] Xiaojun Bi and Shumin Zhai. 2013. Bayesian Touch: A Statistical Criterion
of Target Selection with Finger Touch. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology (St. Andrews, Scotland,
United Kingdom) (UIST ’13). Association for Computing Machinery, New York,
NY, USA, 51–60. https://doi.org/10.1145/2501988.2502058

[14] Pradipta Biswas, Gokcen Aslan Aydemir, Pat Langdon, and Simon Godsill. 2013.
Intent recognition using neural networks and Kalman flters. In International
Workshop on Human-Computer Interaction and Knowledge Discovery in Complex,
Unstructured, Big Data. Springer, 112–123. https://doi.org/10.1007/978-3-642-
39146-0_11

[15] Ali Borji, Andreas Lennartz, and Marc Pomplun. 2015. What do eyes reveal about
the mind?: Algorithmic inference of search targets from fxations. Neurocomput-
ing 149 (2015), 788–799. https://doi.org/10.1016/j.neucom.2014.07.055

[16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[17] Tom Chandler, Maxime Cordeil, Tobias Czauderna, Tim Dwyer, Jaroslaw
Glowacki, Cagatay Goncu, Matthias Klapperstueck, Karsten Klein, Kim Mar-

riott, Falk Schreiber, et al. 2015. Immersive analytics. In 2015 Big Data Visual
Analytics (BDVA). IEEE, 1–8. https://doi.org/10.1109/BDVA.2015.7314296

[18] Noshaba Cheema, Laura A. Frey-Law, Kourosh Naderi, Jaakko Lehtinen, Philipp
Slusallek, and Perttu Hämäläinen. 2020. Predicting Mid-Air Interaction Move-

ments and Fatigue Using Deep Reinforcement Learning. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI,
USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3313831.3376701

[19] Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and Andrew D.
Wilson. 2017. Sparse Haptic Proxy: Touch Feedback in Virtual Environments
Using a General Passive Prop. In Proceedings of the 2017 CHI Conference on Human
Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for
Computing Machinery, New York, NY, USA, 3718–3728. https://doi.org/10.1145/
3025453.3025753

[20] Aldrich Clarence, Jarrod Knibbe, Maxime Cordeil, and Michael Wybrow. 2021.
Unscripted Retargeting: Reach Prediction for Haptic Retargeting in Virtual Reality.
In 2021 IEEE Virtual Reality and 3D User Interfaces (VR). IEEE, 150–159. https:

//doi.org/10.1109/VR50410.2021.00036
[21] Brendan David-John, Candace Peacock, Ting Zhang, T. Scott Murdison, Hrvoje

Benko, and Tanya R. Jonker. 2021. Towards Gaze-Based Prediction of the Intent
to Interact in Virtual Reality. In ACM Symposium on Eye Tracking Research and
Applications (Virtual Event, Germany) (ETRA ’21 Short Papers). Association for
Computing Machinery, New York, NY, USA, Article 2, 7 pages. https://doi.org/
10.1145/3448018.3458008

[22] João Marcelo Evangelista Belo, Anna Maria Feit, Tiare Feuchtner, and Kaj
Grønbæk. 2021. XRgonomics: Facilitating the Creation of Ergonomic 3D Inter-
faces. Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3411764.3445349

[23] Florian Fischer, Miroslav Bachinski, Markus Klar, Arthur Fleig, and Jörg Müller.
2021. Reinforcement learning control of a biomechanical model of the upper
extremity. Scientifc Reports 11, 1 (2021), 1–15. https://doi.org/10.1038/s41598-
021-93760-1

[24] Erik Frøkjær, Morten Hertzum, and Kasper Hornbæk. 2000. Measuring Usability:
Are Efectiveness, Efciency, and Satisfaction Really Correlated?. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (The Hague,
The Netherlands) (CHI ’00). Association for Computing Machinery, New York,
NY, USA, 345–352. https://doi.org/10.1145/332040.332455

[25] Christoph Gebhardt, Brian Hecox, Bas van Opheusden, Daniel Wigdor, James
Hillis, Otmar Hilliges, and Hrvoje Benko. 2019. Learning Cooperative Per-
sonalized Policies from Gaze Data. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 197–208.
https://doi.org/10.1145/3332165.3347933

[26] Eric J. Gonzalez, Parastoo Abtahi, and Sean Follmer. 2020. REACH+: Extending the
Reachability of Encountered-Type Haptics Devices through Dynamic Redirection
in VR. In Proceedings of the 33rd Annual ACM Symposium on User Interface Software
and Technology (Virtual Event, USA) (UIST ’20). Association for Computing Ma-

chinery, New York, NY, USA, 236–248. https://doi.org/10.1145/3379337.3415870
[27] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker. 2002. Lan-

guage Modeling for Soft Keyboards. In Proceedings of the 7th International
Conference on Intelligent User Interfaces (San Francisco, California, USA) (IUI
’02). Association for Computing Machinery, New York, NY, USA, 194–195.
https://doi.org/10.1145/502716.502753

[28] Tovi Grossman and Ravin Balakrishnan. 2005. The Bubble Cursor: Enhancing
Target Acquisition by Dynamic Resizing of the Cursor’s Activation Area. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(Portland, Oregon, USA) (CHI ’05). Association for Computing Machinery, New
York, NY, USA, 281–290. https://doi.org/10.1145/1054972.1055012

[29] Chuan Guo, Geof Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration
of modern neural networks. In International Conference on Machine Learning.
PMLR, 1321–1330.

[30] Rorik Henrikson, Daniel Clarke, Thomas White, Frances Lai, Michael Glueck,
Stephanie Santosa, Daniel Wigdor, Tovi Grossman, Sean Trowbridge, and Hrvoje
Benko. 2020. Head-Coupled Kinematic Template Matching for Target Selection
in Hangry Piggos. In Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems (Honolulu, HI, USA) (CHI EA ’20). Association
for Computing Machinery, New York, NY, USA, 1–4. https://doi.org/10.1145/
3334480.3383176

[31] Rorik Henrikson, Tovi Grossman, Sean Trowbridge, Daniel Wigdor, and Hrvoje
Benko. 2020. Head-Coupled Kinematic Template Matching: A Prediction Model for
Ray Pointing in VR. Association for Computing Machinery, New York, NY, USA,
1–14. https://doi.org/10.1145/3313831.3376489

[32] Niels Henze, Markus Funk, and Alireza Sahami Shirazi. 2016. Software-Reduced
Touchscreen Latency. In Proceedings of the 18th International Conference on
Human-Computer Interaction with Mobile Devices and Services (Florence, Italy)
(MobileHCI ’16). Association for Computing Machinery, New York, NY, USA,
434–441. https://doi.org/10.1145/2935334.2935381

[33] Lorenz Hetzel, John Dudley, Anna Maria Feit, and Per Ola Kristensson. 2021.
Complex Interaction as Emergent Behaviour: Simulating Mid-Air Virtual Key-
board Typing using Reinforcement Learning. IEEE Transactions on Visualization
and Computer Graphics 27, 11 (2021), 4140–4149. https://doi.org/10.1109/TVCG.
2021.3106494

[34] Ashley Hill, Antonin Rafn, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
Rene Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol,
Matthias Plappert, Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu.
2018. Stable Baselines. https://github.com/hill-a/stable-baselines.

[35] Zhiming Hu, Andreas Bulling, Sheng Li, and Guoping Wang. 2021. Fixationnet:
Forecasting eye fxations in task-oriented virtual environments. IEEE Transactions
on Visualization and Computer Graphics 27, 5 (2021), 2681–2690. https://doi.org/
10.1109/TVCG.2021.3067779

[36] Chien-Ming Huang, Sean Andrist, Allison Sauppé, and Bilge Mutlu. 2015. Using
gaze patterns to predict task intent in collaboration. Frontiers in psychology 6
(2015), 1049. https://doi.org/10.3389/fpsyg.2015.01049

[37] Chien-Ming Huang and Bilge Mutlu. 2016. Anticipatory robot control for efcient
human-robot collaboration. In 2016 11th ACM/IEEE international conference on

15

https://doi.org/10.1145/2667317.2667413
https://doi.org/10.1145/2667317.2667413
https://doi.org/10.1109/MSP.2016.2638699
https://doi.org/10.1109/TCYB.2015.2417053
https://doi.org/10.1016/j.cag.2012.12.003
https://doi.org/10.1145/3025453.3025474
https://doi.org/10.1145/3357236.3395525
https://doi.org/10.1145/1095034.1095058
https://doi.org/10.1145/3290605.3300331
https://doi.org/10.1145/2470654.2466181
https://doi.org/10.1145/2501988.2502058
https://doi.org/10.1007/978-3-642-39146-0_11
https://doi.org/10.1007/978-3-642-39146-0_11
https://doi.org/10.1016/j.neucom.2014.07.055
https://doi.org/10.1109/BDVA.2015.7314296
https://doi.org/10.1145/3313831.3376701
https://doi.org/10.1145/3025453.3025753
https://doi.org/10.1145/3025453.3025753
https://doi.org/10.1109/VR50410.2021.00036
https://doi.org/10.1109/VR50410.2021.00036
https://doi.org/10.1145/3448018.3458008
https://doi.org/10.1145/3448018.3458008
https://doi.org/10.1145/3411764.3445349
https://doi.org/10.1145/3411764.3445349
https://doi.org/10.1038/s41598-021-93760-1
https://doi.org/10.1038/s41598-021-93760-1
https://doi.org/10.1145/332040.332455
https://doi.org/10.1145/3332165.3347933
https://doi.org/10.1145/3379337.3415870
https://doi.org/10.1145/502716.502753
https://doi.org/10.1145/1054972.1055012
https://doi.org/10.1145/3334480.3383176
https://doi.org/10.1145/3334480.3383176
https://doi.org/10.1145/3313831.3376489
https://doi.org/10.1145/2935334.2935381
https://doi.org/10.1109/TVCG.2021.3106494
https://doi.org/10.1109/TVCG.2021.3106494
https://github.com/hill-a/stable-baselines
https://doi.org/10.1109/TVCG.2021.3067779
https://doi.org/10.1109/TVCG.2021.3067779
https://doi.org/10.3389/fpsyg.2015.01049

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

human-robot interaction (HRI). IEEE, 83–90. https://doi.org/10.1109/HRI.2016.
7451737

[38] Tanya R Jonker, Ruta Desai, Kevin Carlberg, James Hillis, Sean Keller, and Hrvoje
Benko. 2020. The Role of AI in Mixed and Augmented Reality Interactions. In
CHI2020 ai4hci Workshop Proceedings. ACM.

[39] Fatemeh Koochaki and Laleh Najafzadeh. 2018. Predicting intention through eye
gaze patterns. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS).
IEEE, 1–4. https://doi.org/10.1109/BIOCAS.2018.8584665

[40] Ben Lafreniere, Tanya R. Jonker, Stephanie Santosa, Mark Parent, Michael Glueck,
Tovi Grossman, Hrvoje Benko, and Daniel Wigdor. 2021. False Positives vs. False
Negatives: The Efects of Recovery Time and Cognitive Costs on Input Error
Preference.. In Proceedings of the 34th Annual ACM Symposium on User Interface
Software and Technology (UIST ’21). Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3472749.3474735

[41] Edward Lank, Yi-Chun Nikko Cheng, and Jaime Ruiz. 2007. Endpoint Prediction
Using Motion Kinematics. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (San Jose, California, USA) (CHI ’07). Association
for Computing Machinery, New York, NY, USA, 637–646. https://doi.org/10.
1145/1240624.1240724

[42] Joseph J LaViola Jr, Ernst Kruijf, Ryan P McMahan, Doug Bowman, and Ivan P
Poupyrev. 2017. 3D user interfaces: theory and practice. Addison-Wesley Profes-
sional.

[43] Huy Viet Le, Valentin Schwind, Philipp Göttlich, and Niels Henze. 2017. Pre-
dicTouch: A System to Reduce Touchscreen Latency Using Neural Networks
and Inertial Measurement Units. In Proceedings of the 2017 ACM International
Conference on Interactive Surfaces and Spaces (Brighton, United Kingdom) (ISS
’17). Association for Computing Machinery, New York, NY, USA, 230–239.
https://doi.org/10.1145/3132272.3134138

[44] Michael McGufn and Ravin Balakrishnan. 2002. Acquisition of Expanding
Targets. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Minneapolis, Minnesota, USA) (CHI ’02). Association for Computing
Machinery, New York, NY, USA, 57–64. https://doi.org/10.1145/503376.503388

[45] Kaisa Miettinen. 2012. Nonlinear multiobjective optimization. Vol. 12. Springer
Science & Business Media.

[46] Martez E. Mott and Jacob O. Wobbrock. 2014. Beating the Bubble: Using Kinematic
Triggering in the Bubble Lens for Acquiring Small, Dense Targets. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (Toronto,
Ontario, Canada) (CHI ’14). Association for Computing Machinery, New York,
NY, USA, 733–742. https://doi.org/10.1145/2556288.2557410

[47] Atsuo Murata. 1998. Improvement of pointing time by predicting targets in
pointing with a PC mouse. International Journal of Human-Computer Interaction
10, 1 (1998), 23–32. https://doi.org/10.1207/s15327590ijhc1001_2

[48] Patrick Ngatchou, Anahita Zarei, and A El-Sharkawi. 2005. Pareto multi objective
optimization. In Proceedings of the 13th International Conference on, Intelligent
Systems Application to Power Systems. IEEE, 84–91. https://doi.org/10.1109/ISAP.
2005.1599245

[49] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian
Nowozin, Joshua V Dillon, Balaji Lakshminarayanan, and Jasper Snoek. 2019.
Can you trust your model’s uncertainty? Evaluating predictive uncertainty under
dataset shift. arXiv preprint arXiv:1906.02530 (2019).

[50] Kseniia Palin, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson, and Antti
Oulasvirta. 2019. How Do People Type on Mobile Devices? Observations from a
Study with 37,000 Volunteers. In Proceedings of the 21st International Conference
on Human-Computer Interaction with Mobile Devices and Services (Taipei, Taiwan)
(MobileHCI ’19). Association for Computing Machinery, New York, NY, USA,
Article 9, 12 pages. https://doi.org/10.1145/3338286.3340120

[51] Phillip T. Pasqual and Jacob O. Wobbrock. 2014. Mouse Pointing Endpoint
Prediction Using Kinematic Template Matching. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada)
(CHI ’14). Association for Computing Machinery, New York, NY, USA, 743–752.
https://doi.org/10.1145/2556288.2557406

[52] Philip Quinn and Andy Cockburn. 2008. The efects of menu parallelism on
visual search and selection. In Proceedings of the ninth conference on Australasian
user interface-Volume 76. 79–84.

[53] Philip Quinn and Andy Cockburn. 2020. Loss Aversion and Preferences in
Interaction. Human–Computer Interaction 35, 2 (2020), 143–190. https://doi.org/
10.1080/07370024.2018.1433040

[54] Philip Quinn and Shumin Zhai. 2016. A Cost-Beneft Study of Text Entry Sugges-
tion Interaction. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems (San Jose, California, USA) (CHI ’16). Association for Com-

puting Machinery, New York, NY, USA, 83–88. https://doi.org/10.1145/2858036.
2858305

[55] Antonin Rafn. 2018. RL Baselines Zoo. https://github.com/arafn/rl-baselines-

zoo.
[56] Antonin Rafn, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,

and Noah Dormann. 2019. Stable Baselines3. https://github.com/DLR-RM/stable-

baselines3.

[57] Rufat Rzayev, Sven Mayer, Christian Krauter, and Niels Henze. 2019. Notifcation
in VR: The Efect of Notifcation Placement, Task and Environment. In Proceedings
of the Annual Symposium on Computer-Human Interaction in Play (Barcelona,
Spain) (CHI PLAY ’19). Association for Computing Machinery, New York, NY,
USA, 199–211. https://doi.org/10.1145/3311350.3347190

[58] Hosnieh Sattar, Mario Fritz, and Andreas Bulling. 2020. Deep gaze pooling:
Inferring and visually decoding search intents from human gaze fxations. Neu-
rocomputing 387 (2020), 369–382. https://doi.org/10.1016/j.neucom.2020.01.028

[59] Hosnieh Sattar, Sabine Muller, Mario Fritz, and Andreas Bulling. 2015. Prediction
of search targets from fxations in open-world settings. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 981–990. https:
//doi.org/10.1109/CVPR.2015.7298700

[60] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2021. Ninja Hands:
Using Many Hands to Improve Target Selection in VR. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445759

[61] Ronal Singh, Tim Miller, Joshua Newn, Liz Sonenberg, Eduardo Velloso, and Frank
Vetere. 2018. Combining Planning with Gaze for Online Human Intention Recog-
nition. In Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems (Stockholm, Sweden) (AAMAS ’18). International Foun-
dation for Autonomous Agents and Multiagent Systems, Richland, SC, 488–496.

[62] Kashyap Todi, Gilles Bailly, Luis Leiva, and Antti Oulasvirta. 2021. Adapting User
Interfaces with Model-Based Reinforcement Learning. Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3411764.3445497

[63] Christina Trepkowski, David Eibich, Jens Maiero, Alexander Marquardt, Ernst
Kruijf, and Steven Feiner. 2019. The efect of narrow feld of view and in-
formation density on visual search performance in augmented reality. In 2019
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 575–584.
https://doi.org/10.1109/VR.2019.8798312

[64] Lode Vanacken, Tovi Grossman, and Karin Coninx. 2007. Exploring the efects
of environment density and target visibility on object selection in 3D virtual
environments. In 2007 IEEE symposium on 3D user interfaces. IEEE. https://doi.
org/10.1109/3DUI.2007.340783

[65] Datong Wei, Chaofan Yang, Xiaolong (Luke) Zhang, and Xiaoru Yuan. 2021.
Predicting Mouse Click Position Using Long Short-Term Memory Model Trained by
Joint Loss Function. Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3411763.3451651

[66] Ryen W. White, Peter Bailey, and Liwei Chen. 2009. Predicting User Interests
from Contextual Information. In Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Information Retrieval (Boston, MA,
USA) (SIGIR ’09). Association for Computing Machinery, New York, NY, USA,
363–370. https://doi.org/10.1145/1571941.1572005

[67] Ryen W. White, Paul N. Bennett, and Susan T. Dumais. 2010. Predicting
Short-Term Interests Using Activity-Based Search Context. In Proceedings of
the 19th ACM International Conference on Information and Knowledge Manage-
ment (Toronto, ON, Canada) (CIKM ’10). Association for Computing Machinery,
New York, NY, USA, 1009–1018. https://doi.org/10.1145/1871437.1871565

[68] Haijun Xia, Ricardo Jota, Benjamin McCanny, Zhe Yu, Clifton Forlines, Karan
Singh, and Daniel Wigdor. 2014. Zero-Latency Tapping: Using Hover Information
to Predict Touch Locations and Eliminate Touchdown Latency. In Proceedings
of the 27th Annual ACM Symposium on User Interface Software and Technology
(Honolulu, Hawaii, USA) (UIST ’14). Association for Computing Machinery, New
York, NY, USA, 205–214. https://doi.org/10.1145/2642918.2647348

[69] Difeng Yu, Hai-Ning Liang, Kaixuan Fan, Heng Zhang, Charles Fleming, and
Konstantinos Papangelis. 2019. Design and evaluation of visualization tech-
niques of of-screen and occluded targets in virtual reality environments. IEEE
transactions on visualization and computer graphics 26, 9 (2019), 2762–2774.
https://doi.org/10.1109/TVCG.2019.2905580

[70] Difeng Yu, Hai-Ning Liang, Xueshi Lu, Kaixuan Fan, and Barrett Ens. 2019.
Modeling Endpoint Distribution of Pointing Selection Tasks in Virtual Reality
Environments. ACM Trans. Graph. 38, 6, Article 218 (Nov. 2019), 13 pages. https:
//doi.org/10.1145/3355089.3356544

[71] Difeng Yu, Qiushi Zhou, Joshua Newn, Tilman Dingler, Eduardo Velloso, and
Jorge Goncalves. 2020. Fully-occluded target selection in virtual reality. IEEE
Transactions on Visualization and Computer Graphics 26, 12 (2020), 3402–3413.
https://doi.org/10.1109/TVCG.2020.3023606

[72] Gregory Zelinsky, Zhibo Yang, Lihan Huang, Yupei Chen, Seoyoung Ahn, Zijun
Wei, Hossein Adeli, Dimitris Samaras, and Minh Hoai. 2019. Benchmarking
gaze prediction for categorical visual search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 0–0. https:
//doi.org/10.1109/CVPRW.2019.00111

[73] Shumin Zhai, Carlos Morimoto, and Steven Ihde. 1999. Manual and Gaze In-
put Cascaded (MAGIC) Pointing. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Pittsburgh, Pennsylvania, USA) (CHI
’99). Association for Computing Machinery, New York, NY, USA, 246–253.
https://doi.org/10.1145/302979.303053

[74] Brian Ziebart, Anind Dey, and J. Andrew Bagnell. 2012. Probabilistic Pointing
Target Prediction via Inverse Optimal Control. In Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces (Lisbon, Portugal) (IUI ’12).

16

https://doi.org/10.1109/HRI.2016.7451737
https://doi.org/10.1109/HRI.2016.7451737
https://doi.org/10.1109/BIOCAS.2018.8584665
https://doi.org/10.1145/3472749.3474735
https://doi.org/10.1145/1240624.1240724
https://doi.org/10.1145/1240624.1240724
https://doi.org/10.1145/3132272.3134138
https://doi.org/10.1145/503376.503388
https://doi.org/10.1145/2556288.2557410
https://doi.org/10.1207/s15327590ijhc1001_2
https://doi.org/10.1109/ISAP.2005.1599245
https://doi.org/10.1109/ISAP.2005.1599245
https://doi.org/10.1145/3338286.3340120
https://doi.org/10.1145/2556288.2557406
https://doi.org/10.1080/07370024.2018.1433040
https://doi.org/10.1080/07370024.2018.1433040
https://doi.org/10.1145/2858036.2858305
https://doi.org/10.1145/2858036.2858305
https://github.com/araffin/rl-baselines-zoo
https://github.com/araffin/rl-baselines-zoo
https://github.com/DLR-RM/stable-baselines3
https://github.com/DLR-RM/stable-baselines3
https://doi.org/10.1145/3311350.3347190
https://doi.org/10.1016/j.neucom.2020.01.028
https://doi.org/10.1109/CVPR.2015.7298700
https://doi.org/10.1109/CVPR.2015.7298700
https://doi.org/10.1145/3411764.3445759
https://doi.org/10.1145/3411764.3445497
https://doi.org/10.1109/VR.2019.8798312
https://doi.org/10.1109/3DUI.2007.340783
https://doi.org/10.1109/3DUI.2007.340783
https://doi.org/10.1145/3411763.3451651
https://doi.org/10.1145/1571941.1572005
https://doi.org/10.1145/1871437.1871565
https://doi.org/10.1145/2642918.2647348
https://doi.org/10.1109/TVCG.2019.2905580
https://doi.org/10.1145/3355089.3356544
https://doi.org/10.1145/3355089.3356544
https://doi.org/10.1109/TVCG.2020.3023606
https://doi.org/10.1109/CVPRW.2019.00111
https://doi.org/10.1109/CVPRW.2019.00111
https://doi.org/10.1145/302979.303053

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Association for Computing Machinery, New York, NY, USA, 1–10. https://doi.
org/10.1145/2166966.2166968

A STUDY 1 - DATA COLLECTION

A.1 Task Scenarios
Two task scenarios, representative of common interaction tasks that
are efortful to perform, were employed. The dense target selection
task represented a manually-intensive task, where participants
needed to select a small object located at the center of a cluster [46,
64]. The text matching task served as a mentally-demanding task,
where participants needed to fnd and select an object with text that
matched a target text. This task simulated real-world, search-heavy
scenarios like searching for ingredients from a receipt, fnding street
names on a map, or browsing through a menu [52].

A.1.1 Dense Target Selection Task. This task was inspired by exist-
ing literature on small and dense target selection [46, 64]. The goal
was to select the earth icon at the center of a planet cluster (Figure
3, left). The cluster was surrounded by other planet icons, which
were randomly sized and distributed to add noise to the task envi-
ronment. This setting required participants to aim precisely [64]
and simulated scenarios where participants need to select objects
in a cluttered virtual scene (e.g., select a keychain in a messy room).

The angular size of the target was set to 1◦, which was deter-
mined by previous research to be sufciently challenging [70]. The
angular distance, or required movement amplitude, was fxed to
90
◦
, and the target was generated in a predefned list of locations

that were no more than 30◦
away from the horizontal plane. This

target placement required participants to rotate their heads to fnd
the out-of-view object, which added physical workload, without
requiring that they overextend their neck. The distractors that were
located directly adjacent to the target were the same size as the
target, while others were randomly sized between 0.6◦

and 2◦.
Participants started the task by pointing at a button at a fxed

center position. A blue 3D arrow then appeared to indicate the
location of the target. The arrow was designed to minimize search
time in this task [69]. Participants then followed the direction of
the arrow to point at the target through the right-hand controller
and pressed the trigger to confrm their selection.

A.1.2 Text Matching Task. This task was designed to require par-
ticipants to perform a difcult visual search (mentally-demanding)
[25, 63]. Participants were required to fnd a target text string that
matched a prompt (Figure 3, right) in a 6×7 grid of texts strings.

The angular distance between the candidates was 10◦
horizon-

tally and 2.8◦
vertically to make sure all objects were located within

feld of view of participants to minimize their physical workload
(e.g., turning their bodies to search for the target). The object radius
was set to 1.5◦

and all objects were placed on a spherical plane.
Participants started the task by memorizing the target string and

selecting a button at a fxed center position. All candidate strings
then appeared with the goal text reminder at the top of the grid. To
complete a task trial, participants pointed at the target icon using
the controller and pressed the trigger to select it.

A.2 Suggestion Method
Two suggestion methods were used in the study—a highlighting
suggestion and a pop-up suggestion. With the highlighting sug-
gestion, a blinking fuorescent outline was displayed around the
suggested object (Figure 4 left). A symbol of Button A also appeared
at a pre-determined, unoccluded position close to the indicated ob-
ject to depict that the object could be selected by pressing the
Button A on the Touch controller. Participants could also cancel
the suggestion by tilting the joystick to the right. Note that the
highlighting suggestion was in-situ, so it remained at the object
location without following the direction participants were looking.

With the pop-up notifcation suggestion, a suggestion window
appeared at the bottom of the participant’s current viewing di-
rection (Figure 4 right) [57]. The suggestion presented either a
predicted icon in the dense target selection task or a text string in
the text matching task. When participants rotated their viewing
direction, the pop-up notifcation followed the viewing direction
using horizontal linear interpolation. Linear interpolation was not
applied in the vertical dimension to avoid the suggestion being
“stuck” on the head-mounted display, which may have caused vi-
sual discomfort. Like the highlighting suggestion, participants could
quickly access the suggested object via the Button A or discard the
suggestion by tilting the joystick to the right.

A.3 Example Data Trials
We show example data trials collected in session 2 in Figure 11.

A.4 Results - Session 2
Figure 12 shows the average response times and delayed times for
the suggestion methods and task types. We performed signifcance
tests with linear mixed models on response time and delayed time.

A.4.1 Response Time. Response time was defned the time elapsed
between the appearance of a correct intelligent suggestion and a
participant’s selection of that suggestion. First, the Yeo-Johnson
transformation, as chosen by the bestNormalize package in R, was
applied to normalize the data. A linear mixed model was then used
to identify whether diferent task types and suggestion methods
lead to diferent response times across various suggestion timings.
We set Task Type, Suggestion Method, and Suggestion Timing
as fxed factors and Participant as a random factor. The linear
mixed model indicated that there were interaction efects between
Suggestion Method × Suggestion Timing (F = 125.18, p < .001)
and Task Type × Suggestion Timing (F = 49.47, p < .001). As
Task Type and Suggestion Method led to diferent response times
across Suggestion Timing, we used multivariate adaptive regres-
sion splines (MARS) to model the relationships between suggestion
timing and response time.

A.4.2 Response Rate. Response rate was defned as the likelihood
that participants accepted a correct suggestion. Signifcance testing
was not applied because the “rate” variable was only meaningful if
we considered multiple data points.

A.4.3 Delayed Time. Delayed time was the time delay that was
incurred due to incorrect suggestions. Similar to response time,
an arcsinh transformation as suggested by the bestNormalize

17

https://doi.org/10.1145/2166966.2166968
https://doi.org/10.1145/2166966.2166968

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Figure 11: Example data trials from session 2.

- Average.PNG

Figure 12: Average response times and delayed times for the
suggestion methods (highlighting and pop-up notifcation)
and task types (dense target selection and text matching).
The error bars represent mean ± std .

package, was applied and a linear mixed model was used to iden-
tify signifcant interaction efects between Task Type and Sug-
gestion Method with regard to Suggestion Timing. The results
indicated a signifcant efect of Task Type × Suggestion Timing
(F = 5.30,p = .021), but not Suggestion Method × Suggestion
Timing (F = 1.24, p = 0.267) nor Suggestion Method × Task
Type × Suggestion Timing (F = 0.01, p = .928).

B STUDY 2 - SIMULATION

B.1 Target Prediction Model Mock-up
B.1.1 Target Prediction Model Observations. A selection predic-
tion model based on the available data [20] was replicated and we
observed how the predicted probability of the most likely object
changed as the task progressed. Further, we drew inspiration from
existing research on gaze-based target prediction [15, 36]. From
these explorations, we made the following observations:

• The global centerline of model confdence over time (i.e., the
average trend across all trials) seems to be a sigmoid-like
curve [14, 15, 20, 74]. Intuitively, model confdence acceler-
ates from a low point and becomes steady as it approaches an
asymptote.

• By replicating [20] and observing results in [36], we found that
while the local centerline of the model confdence value (i.e., the
general trend of each trial) seems to roughly follow a sigmoid-

like curve, it can deviate from the global centerline. While the
local centerline can still be approximated by a sigmoid curve,
the speed of increase can difer on each trial.

• The fnal confdence curve of each trial, rather than the general
trend, contains seemingly randomly-distributed deviations
(i.e., spikes and dips) from the local centerline. The evidence
was found by replicating [20] and observing results in [36].

B.1.2 Mock-up Prediction Model Generation. Based on these obser-
vations, the following trial generation process was formulated for
our mock-up prediction model. Our goal was to produce reasonable
model confdence curves that mimic an actual prediction model.

• When starting to generate a data trial, the model frst sam-

ples a trial length tmax based on the log-normal distribution
regarding user task completion time found in Study 1 (Fig-
ure 6A). This sampling approach allows the fnal dataset to
approximate the distribution of user task completion time.

• The model then generates a global centerline based on a sig-
moid functiony1 = siдmoid(x , k, x0,u, l) where k is the logistic
growth rate, x0 is the sigmoid’s midpoint, u is the upper bound,
and l is the lower bound (Equation 7). This simulates the ob-
servation that the global centerline follows a sigmoid curve in
an actual prediction model (Figure 6B).

u − l
y1 = + l (7)

1 + e−k (x −x0)

• To simulate the variances in a local centerline, the model gen-
erates a Bell curve y2 = bell(x , µ, σ) (Equation 8) to defne the
area of deviation (see Figure 6C). The distance between the
local centerline y3 and the global centerline is probabilistically
sampled from a Gaussian distribution following Equation 9,
where µr and σr are the predefned mean and standard devia-
tion of a Gaussian distribution. By generating random numbers
from a Gaussian distribution (with random.gauss), it is more
likely that a local centerline is close to the global centerline

• The fnal step of the mock-up model is to generate spikes and

than further away.

1
x − 2 −(µ)

y2 = √ e 2σ 2
(8)

σ 2π

y3 = y1 + y2 · random.gauss(µr , σr) (9)

dips based on the local centerline. To achieve this, the model
uses a pre-determined probability jp to represent the likelihood
of jumping to another randomly generated local centerline
(new y3) at a particular timestamp t . The model goes through
all timestamps in the trial and modifes the curve depending
on it a jump will occur. The resulting curve preserves the
property of previous steps: by averaging all generated trials,
the centerline still follows a sigmoid function and the local
centerline deviates within a predefned region. The model
further corrects all probabilities larger than 1 to 1 and smaller
than 0 to 0. A sample of a generated trial can be found in Figure
6D.

B.1.3 Dataset Generation. We pre-defned the parameters for the
trial generation in later analyses. For the global centerline-related
parameters, we set logistic growth rate k = 2, sigmoid’s midpoint
x0 = tmax /2, upper bound u = 1, lower bound l = 0. This simulated
a model that knew little information when users started a trial

18

Optimizing the Timing of Intelligent Suggestion in Virtual Reality UIST ’22, October 29-November 2, 2022, Bend, OR, USA

and increased its confdence over time until it reached an almost
perfect understanding when users fnished the trial, similar to the
prediction models in [20] and [36]. Regarding the local centerline-
related parameters, we set the bell curve mean µ = tmax /1.9 and
standard deviation σ = 1. We also set the Gaussian distribution
mean µr = 0 and standard deviation σr = 1. The random jump rate
jp was fxed at 0.05. The fnal results yielded visually similar curves
as in the literature [20, 36]. The frame rate was determined to be
50 (0.02 seconds per frame).

B.1.4 RL Reward Setings. Three reward settings were used to train
t

the RL agents. The frst reward setting was r1, where r = Gain(t)
1

t
if a suggestion was displayed at t , otherwise r = 0. However, the

1

sparsity in r1 (i.e., the agent only receives a single reward per trial)
prevented many of the agents from learning to display a suggestion
at all.

The second reward setting, r2, sought to solve the reward spar-
sity issue. Specifcally, reward shaping was performed when the

t
suggestion wasn’t displayed: r = Gain(t) if a suggestion was dis-

2
t

played at t , otherwise r = −k · pm . We used k to penalize the
2

action of not displaying any suggestion. Furthermore, an agent
received more of a penalty if it did not display a suggestion when
the model confdence value was high (pm). The penalty factor k
was treated as a hyper-parameter during training. While r2 worked
well and enabled the agents to learn to display suggestions, a static
value of k might have been limiting. In particular, the penalty of not
displaying a suggestion should have changed as training progresses
for true reward (i.e., gain function) maximization. In other words,
the agent reliance on k should be reduced over the training process.
Thus, k was decreased as the training progressed.

The third reward setting also leveraged the beneft of dense re-
wards, but removed the agents’ reliance on the penalty factor k ,
which may have negative impacts on true reward maximization. In

t t −1 0
this setting, r = Gain(t) − r (where r = 0) at a timestamp t .

3 3 3

This setting essentially rewarded the agent based on how good it
performed on a particularly timestamp t, by computing the contri-
bution of agent’s action at t towards the gain. This reward setting
thus allowed agents to learn directly from gain functions with dense
feedback.

B.1.5 RL Training Methodology. OpenAI Gym [16] with Stable
Baselines [34] (for recurrent policies) and Stable Baselines3 [56]
(for MLP policies) were used to build and train the RL agents. A
preliminary analysis was frst run on the toy dataset to determine
the appropriate model-free RL training algorithms (PPO2, DQN,
A2C, and ACER), reward settings (r1, r2, and r3), policy architectures
(MLP and LSTM), policy network size, and training epochs for both
task scenarios using the default hyper-parameter settings from the
Stable Baselines. This experimentation demonstrated that the PPO2
training with MLP policies was a lightweight and efective solution.
ACER with LSTM was the other powerful solution that worked
well, but may take longer to train. r3 was also found to be more
suitable for the dense target selection task, while r2 was better for
the text matching task. The training with 4e6 steps was sufcient
for MLP policies and 2e6 steps was adequate for LSTM policies,
based on the convergence of gain in the validation dataset.

After the preliminary exploration, full-range hyper-parameter
searches were performed with Optuna [5] using the training dataset
for memory size m, penalty k , network size, activation function,
learning rate, batch size, discount factor γ , and other algorithm-

related parameters following the guidance of RL Baselines Zoo
[55]. The model was then fne-tuned by focusing on several key
parameters related to training. The training was stopped when
the gain in the validation dataset converged. After training all the
agents, their performance on the validation and testing dataset
were benchmarked.

B.2 Validation and testing results
Detailed validation and testing results of Optimal Thresholding,
Heuristic Thresholding, and RL can be found in Table 4 and Table 5.

B.3 Simulation 4: Revisiting a Prior Study
To determine the optimal timing of highlighting suggestions if we
were to use an existing model for intelligent suggestion, we ran
another simulation using an open-sourced dataset from a prior
work [20]. The dataset contained 809 trials with four prediction
features over time (i.e., position x, y, z, and rotation yaw every 10
milliseconds) and a fnal selected target. The original work was
replicated with respect to data augmentation, LSTM structure, and
training protocol, resulting in a model with 95.06% testing accuracy.
For COBO, the features were reft to the trained model to obtain
model confdence values over time for the 807 trials.

While it could be challenging to replicate the original study and
acquire empirical data on participant response behavior towards in-
telligent suggestions, the following assumptions were made for the
cost and beneft functions: (1) It would take participants 0.5 seconds
(i.e., 0.25 seconds reaction time and 0.25 seconds trigger pressing
time) to respond to a correct suggestion; (2) An incorrect suggestion
would cause 0.25 seconds (i.e., reaction time) of delay; (3) partici-
pants would act rationally [62] and would not use a suggestion if
the estimated response time (current time + 0.5 seconds) was larger
than task completion time of that trial without any suggestion.

Under these assumptions, the optimized threshold for the two
objectives were calculated using the COBO framework. The results
show that the optimized threshold for completion time (thres =
0.90) was able to save 0.0801 seconds (std . = 0.1540 seconds) and
the optimized threshold for the usage percentage (thres = 0.82) led
to 52.27% (std . = 42.20%) of clicks. Nine Pareto optimal values were
also found(thres = 0.82 − 0.90). The performance improvement in
terms of time savings was small for this selection task, although
a higher suggestion usage percentage could lead to better user
experiences. The original authors’ estimate based on the prediction
accuracy alone (thres = 0.85) was close to our simulation results.

19

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Difeng Yu, Ruta Desai, Ting Zhang, Hrvoje Benko, Tanya R. Jonker, and Aakar Gupta

Table 4: Validation and testing results when using Optimal Thresholding and Heuristic Thresholding on the time saved for
users and on suggestion usage percentages.

Task Type Strategy (Threshold) Time Saved/Usage% (Std.) % Improved Time Saved/Usage% % Improved
Validation Test

T
i
m
e
 s
a
v
e
d

Dense Target Selection Optimal Thresholding (0.47) 0.4073s (0.3169s) 44.07% 0.4073s (0.3202s) 39.39%
Dense Target Selection Heuristic Thresholding (0.85) 0.2827s (0.3597s) - 0.2922s (0.3645s) -

Text Matching Optimal Thresholding (0.98) 1.5822s (1.7991s) 268.38% 1.6211s (1.7946s) 260.89%
Text Matching Heuristic Thresholding (0.50) 0.4295s (1.1225s) - 0.4492s (1.1440s) -

Dense Target Selection Optimal Thresholding (0.81) 65.85% (17.70%) 0.64% 65.69% (18.30%) 0.36%

U
s
a
g
e
 %

Dense Target Selection Heuristic Thresholding (0.85) 65.43% (20.24%) - 65.45% (20.42%) -

Text Matching Optimal Thresholding (0.96) 87.33% (18.44%) 50.72% 87.17% (18.53%) 51.52%
Text Matching Heuristic Thresholding (0.50) 57.94% (15.85%) - 57.53% (15.63%) -

Table 5: Validation and testing results of RL regarding time saved for users and suggestion usage percentages.

Task Type Strategy Time Saved (Std.) % Improved Time Saved % Improved Usage% (Std.) % Improved Usage% % Improved
Validation Test Validation Test

Pointing PPO-MLP 0.4078s (0.3253s) 44.25% 0.4087s (0.3285s) 39.87% - - - -

Pointing ACER-LSTM 0.4079s (0.3354s) 44.29% 0.4084s (0.3362s) 39.77% - - - -

Text Matching PPO-MLP 1.5673s (1.7878s) 265.91% 1.6050s (1.7877s) 257.30% 87.33% (18.18%) 50.72% 87.31% (18.05%) 51.76%
Text Matching ACER-LSTM 1.5275s (1.7418s) 240.05% 1.5671s (1.7328s) 248.86% - - - -

20

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Selection Facilitation Techniques
	2.2 Target Prediction
	2.3 Reinforcement Learning

	3 Research Overview
	4 COBO Framework
	4.1 Target Prediction Model
	4.2 Cost and Benefit Quantification
	4.3 Gain Optimization

	5 Study 1 - Data Collection
	5.1 Participants and Apparatus
	5.2 Task Scenarios
	5.3 Suggestion Method
	5.4 Study Design
	5.5 Study Procedure
	5.6 Results - Session 1
	5.7 Results - Session 2
	5.8 Summary

	6 Study 2 - Simulation
	6.1 Target Prediction Model Mock-up
	6.2 Simulation 1: Optimal Thresholding
	6.3 Simulation 2: Reinforcement Learning
	6.4 Simulation 3: Multi-Objective Optimization
	6.5 Summary

	7 Study 3 - Validation
	7.1 Validation 1 - Optimal Thresholding vs. Heuristic Thresholding
	7.2 Validation 2 - Optimal Thresholding vs. RL

	8 Discussion
	8.1 Optimization Objectives
	8.2 RL as an Optimization Strategy
	8.3 Applications
	8.4 Target Prediction Model

	9 Conclusion
	Acknowledgments
	References
	A Study 1 - Data Collection
	A.1 Task Scenarios
	A.2 Suggestion Method
	A.3 Example Data Trials
	A.4 Results - Session 2

	B Study 2 - Simulation
	B.1 Target Prediction Model Mock-up
	B.2 Validation and testing results
	B.3 Simulation 4: Revisiting a Prior Study

