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Understanding the endpoint distribution of pointing selection tasks can re-
veal the underlying patterns on how users tend to acquire a target, which is
one of the most essential and pervasive tasks in interactive systems. It could
further aid designers to create new graphical user interfaces and interaction
techniques that are optimized for accuracy, efficiency, and ease of use. Previ-
ous research has explored the modeling of endpoint distribution outside of
virtual reality (VR) systems that have shown to be useful in predicting selec-
tion accuracy and guide the design of new interactive techniques. This work
aims at developing an endpoint distribution of selection tasks for VR systems
which has resulted in EDModel, a novel model that can be used to predict
endpoint distribution of pointing selection tasks in VR environments. The
development of EDModel is based on two users studies that have explored
how factors such as target size, movement amplitude, and target depth affect
the endpoint distribution. The model is built from the collected data and
its generalizability is subsequently tested in complex scenarios with more
relaxed conditions. Three applications of EDModel inspired by previous
research are evaluated to show the broad applicability and usefulness of the
model: correcting the bias in Fitts’s law, predicting selection accuracy, and
enhancing pointing selection techniques. Overall, EDModel can achieve high
prediction accuracy and can be adapted to different types of applications in
VR.

CCS Concepts: •Human-centered computing→HCI theory, concepts
and models; Pointing; User studies; • Computing methodologies→ Vir-
tual reality.

Additional Key Words and Phrases: target selection, selection modeling,
endpoint distribution, Fitts’s Law, error prediction

ACM Reference Format:
Difeng Yu, Hai-Ning Liang, Xueshi Lu, Kaixuan Fan, and Barrett Ens. 2019.
Modeling Endpoint Distribution of Pointing Selection Tasks in Virtual Real-
ity Environments. ACM Trans. Graph. 38, 6, Article 218 (November 2019),
13 pages. https://doi.org/10.1145/3355089.3356544

∗Corresponding author who can be contacted via haining.liang@xjtlu.edu.cn

Authors’ addresses: Difeng Yu, difeng.yu@student.unimelb.edu.au, The University of
Melbourne, Australia, Xi’an Jiaotong-Liverpool University, China; Hai-Ning Liang,
haining.liang@xjtlu.edu.cn, Xi’an Jiaotong-Liverpool University, China; Xueshi Lu,
xueshi.lu17@student.xjtlu.edu.cn, Xi’an Jiaotong-Liverpool University, China; Kaixuan
Fan, kaixuan.fan16@student.xjtlu.edu.cn, Xi’an Jiaotong-Liverpool University, China;
Barrett Ens, barrett.ens@monash.edu, Monash University, Australia.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
0730-0301/2019/11-ART218 $15.00
https://doi.org/10.1145/3355089.3356544

Fig. 1. The effective target calculated from selection endpoints might not be
the same as the nominal target. EDModel is based on the bivariate-Gaussian
distribution N2(µ, Σ) and can predict how endpoints are distributed when
selecting targets with different characteristics (width, distance, and depth)
in virtual reality environments.

1 INTRODUCTION
One of the primary and most common tasks in current interactive
virtual reality (VR) systems is target selection of menus and buttons
or other objects. Virtual pointing techniques like raycasting allow
users to select targets beyond their area of reach with relatively little
physical movement. Raycasting has been extensively used in current
consumer VR systems like Oculus RIFT and HTC VIVE and in a wide
range of applications and games. Despite their prevalence, flexibility,
and usefulness, virtual pointing techniques typically suffer severely
when targets are small, far away from users, or occluded by other
elements within the virtual reality environment (VE) [Argelaguet
and Andujar 2013]. As a result, the design of 3D graphical user
interfaces and new interactive techniques that support efficient,
accurate, and effortless target selection in VEs is still challenging.

Research on pointing selection tasks in VE can be broadly classi-
fied into two groups: (1) adding enhancements to interactive tech-
niques, and (2) building models. Enhancement techniques (e.g.,
[Bowman et al. 2004; Tu et al. 2019]) incorporate additional fea-
tures to support fast and precise selection. For example, a recent
publication [Baloup et al. 2019] has presented RayCursor which
aims to enable precise selection by filtering noisy inputs and em-
bedding a movable pointer (along the depth axis) on the ray. Some
other research has applied or built user performance models for
3D virtual space to aid user interface (UI) design decisions. Most of
these models are based on Fitts’s law [Argelaguet and Andujar 2009;
Kopper et al. 2010; Qian and Teather 2017; Wingrave and Bowman
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2005]. Our review of the literature shows that there is little work
in VR on modeling the endpoint distribution of pointing selection
tasks, which is the probability of the pointing ray being in a certain
position and orientation when a selection is triggered. Our paper
focuses on filling this gap.

Unlike Fitts’s law, which only accounts for movement time, mod-
eling the endpoint distribution allows us to uncover the underlying
source(s) of selection errors and uncertainties according to the im-
portant characteristics of targets [Huang et al. 2018; Wobbrock et al.
2008]. It can also provide us with insights on how users actually
acquire a given target, probably without considering about its nom-
inal size [Crossman 1957; Zhai et al. 2004] (see Figure 1). Further,
a useful model of endpoint distribution can allow us to predict the
possible selection points or areas based on the characteristics of the
target (such as target width and distance); as such, it can help in the
design and framing of new UI and novel interactive techniques that
allow accurate, efficient, and easy selection of targets [Grossman
and Balakrishnan 2005; Grossman et al. 2007; Li et al. 2018].
In this paper, we introduce EDModel, a novel endpoint distri-

bution model developed from empirical data of pointing selection
tasks in VE. We present two user studies which have explored how
different factors (such as target size, movement amplitude, and tar-
get depth) affect the endpoint distribution and how these effects
can be modeled. We further propose three applications of EDModel
inspired by past research to aid designers of new 3D UI and in-
teractive techniques that aim to improve users’ pointing selection
performance. We illustrate the study limitations and point out future
working directions, and provide a conclusion at the end.

In this paper, we make four main contributions:

• EDModel: an endpoint distribution model based on bivariate-
Gaussian distribution in both simple and complex scenarios for
pointing selection tasks in VEs.

• Two user studies that model pointing selection distribution in
VEs and provide insights on how different factors (such as target
width, movement amplitude, and target depth) might affect the
endpoint distribution, as summarized in Section 5.

• Three applications of EDModel inspired by previous research: (1)
correcting the bias in Fitts’s Law, (2) predicting selection accuracy,
and (3) BayesPointer (a selection enhancement technique) for
pointing selection in VR, as demonstrated in Section 6.

• An open-source dataset that includes 20640 pointing selection
trials in VR collected in Study 1 and Study 2, and also the data pro-
cessing scripts for replication and future research (see Appendix
A for details).

2 RELATED WORK
In this section, we review and summarize related work regarding
pointing selection in VR, endpoint deviation and its causes, and
modeling endpoint distribution.

2.1 Pointing Selection in VR
Pointing selection is one of the main metaphors for acquiring targets
in current VR systems [Argelaguet and Andujar 2013]. The most
common technique allows a user to point at an object with a virtual
ray which defines the pointing direction. The closest object that

intersects with the ray can be selected by pressing the selection
trigger. The virtual ray can either emanate from the user’s hand
position (hand-based pointing) or from the tracked head position
(head-based pointing) [Bowman et al. 2004]. Despite the extensive
use of this technique, pointing selection is notoriously difficult
for acquiring small or distant targets (cf. [Argelaguet and Andujar
2013]).
To overcome the selection difficulty, some researchers have pro-

posed enhancement techniques for efficient object selection (for
example, [Baloup et al. 2019; Tu et al. 2019; Vanacken et al. 2007]).
Others have explored models of how people perform pointing and
selection tasks to allow for a better understanding of the process and
further make reliable performance predictions [Kopper et al. 2010;
Wingrave and Bowman 2005]. However, most of the research on
modeling pointing selection in VR is about movement time estima-
tion based on Fitts’s law [Fitts 1954; Soukoreff and MacKenzie 2004].
Hence, we still do not know much about the underlying properties
of how selection endpoints actually are distributed.

2.2 Endpoint Deviation and Speed-Accuracy Tradeoff
Past research (e.g., [Wobbrock et al. 2011b]) has distinguished be-
tween two sources of selection errors: constant and variable. The
constant error is defined as the mean distance of endpoints to the
target center, whereas the variable error reflects the spread of hits,
or endpoint deviation.

The endpoint deviation is usually determined by different speed-
accuracy biases of users who might factor in how costly an error
is when a making selection [Banovic et al. 2013; Zhai et al. 2004].
Since there is already extensive research related to speed-accuracy
tradeoff, we direct interested readers to literature reviews in [Plam-
ondon and Alimi 1997; Wobbrock et al. 2008] and some more recent
publications [Guiard et al. 2011; Guiard and Rioul 2015; MacKenzie
and Isokoski 2008]. When influenced by the tradeoff, a user may or
may not comply with the precision required by a task, and this could
lead the endpoint dispersion to depart from the target area [Schmidt
et al. 1979; Zhai et al. 2004]. In other words, a more "aggressive" user,
for example, who might select the target in a breakneck speed could
lead to a low selection accuracy with large endpoint dispersion. In
contrast, a more cautious user, who might slow down the pace to
achieve higher accuracy, tends to have a smaller deviation of selec-
tion endpoints. Some studies [Banovic et al. 2013; Soukoreff and
MacKenzie 2009] indicate that users are likely to favor efficiency
and lean towards optimal speed-accuracy tradeoff, which could
minimize the task completion time.
While speed-accuracy tradeoff might vary for different users,

some researchers have been trying to explore how users will typ-
ically behave by modeling the endpoint distribution in selection
tasks.

2.3 Endpoint Distribution Modeling
There has been long interest in exploring the distribution of selection
endpoints. In 1968, Welford observed that the endpoint deviation
in a 1D task followed a Gaussian distribution [Welford 1968]. Later,
results from Schmidt et al.’s studies [Schmidt et al. 1979] indicated
that the errors that are parallel and perpendicular to the movement
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direction could probably produce an elliptical distribution, with the
long axis in line with the direction of movement. Similarly, setting
the target to a fixed angle (45◦), Murata [1999] noticed that the
distribution of the horizontal and vertical coordinates of endpoints
could be approximated by the Gaussian distribution.

More recently, Grossman and Balakrishnan [2005] built a proba-
bilistic model for 2D rapid pointing tasks. Their model assumes that
the spread of hits would follow a bivariate normal distribution. The
model calculated the probability of hitting a target by integrating
the distribution and further mapped the probability to an index of
difficulty (ID) value. The model was shown to have a good level of
prediction for movement time. By varying distances and angles of
movement, Grossman and Balakrishnan also found that the distribu-
tion for selecting square targets has a larger spread (twice as large)
in the direction of movement than in the direction perpendicular to
the movement regardless of movement angles. Also, they found that
the deviations in both directions increased with the target distance
by a constant factor. Grossman et al. [2007] further generalized their
model to targets with arbitrary shapes.

Bi and colleagues conducted a series of experiments to investigate
the distribution of endpoints for finger touch input. Bi et al. [2013]
first proposed a dual-distribution hypothesis, which assumed the
endpoint distribution came from two independent normal distributions—
one governed by the speed-accuracy tradeoff and the other reflected
the absolute precision of finger touch. They then derived the FFitts
Law for predicting finger touch performance based on endpoint
distribution. Later, Bi and Zhai [2013] combined Bayes’ theorem
with the dual-distribution hypothesis to improve target selection
accuracy. Their study indicated a strong linear relationship between
endpoint variance and target size. Bi and Zhai [2016] further devel-
oped a model to predict selection accuracy inspired by how selection
endpoint distributes. Recent work by Yamanaka [2018a,b] showed
that FFitts Law could not be applied when the absolute deviation
was larger than the total distribution. In contrast to the approaches
based on the dual-distribution hypothesis, our work models the
whole distribution directly (more on this later).

Several other researchers have studied endpoint distribution in se-
lection tasks that involve moving targets instead of stationary ones.
Huang et al. [2018] found a Ternary-Gaussian model for moving
target selection in 1D. Li et al. [2018] further extended the Ternary-
Gaussian model to a 2D context. Lee and colleagues [Huang and
Lee 2019; Lee et al. 2018; Lee and Oulasvirta 2016; Lee et al. 2019;
Park et al. 2018] have also been working on endpoint distribution
modeling for moving target selection that considers the internal
mechanisms by which a user interacts with a computer. Apart from
target selection, endpoint distribution has also been modeled for
reducing noisy input in text entry tasks [Goodman et al. 2002; Yu
et al. 2017].

This current work differs from existing research in several ways.
First, our work is for VR environments, while previous work focused
on other types of displays and devices. VR poses extra challenges
because users are fully immersed in the 3D VE and could interact
with targets located in different places and depths. Current VR
systems also use unique and different input paradigms comparing
to traditional mouse and stylus input. For example, the most popular
VR systems like the Oculus RIFT and HTC Vive allow head-pointing

via the head-mounted display (HMD) or hand-pointing via their
dual-handheld controllers. In addition, while previousworkmodeled
the endpoint distribution based on strong assumptions, our model is
derived from empirical data from two user experiments. Besides, we
have considered extreme conditions to test the generalizability of
our model, while most previous works have not taken into account
these conditions. Finally, we also released the collected dataset for
replication and to support future work.

3 STUDY 1
One purpose of this first study was to verify whether the end-
point distribution of pointing selection in VEs follows the bivariate-
Gaussian distribution1. We also aimed to explore the effects (and
possible interaction effects) of target widthW and movement am-
plitude A on the endpoint distribution. We were further interested
in predicting the parameters of the bivariate-Gaussian distribution,
specifically the mean vector µ and the covariance matrix Σ (see
Equation 1), through the influential factors.

X ∼ N2(µ, Σ) (1)

3.1 Hypotheses
Based on the past literature and our pilot results, we formulated the
following hypotheses before the study:
• H1. The endpoint distribution of pointing selection in VEs is bivariate-
Gaussian. Previous studies have indicated or hypothesized that the
endpoint distribution of 2D pointing selection could be bivariate-
Gaussian for finger touch-based input [Bi et al. 2013; Bi and Zhai
2013; Wang and Ren 2009] and puck-tablet interface [Grossman
and Balakrishnan 2005]. Our pilot results also suggested that this
hypothesis could hold for pointing selection in VR.

• H2. The target width W affects the endpoint distribution signifi-
cantly. Previous findings suggested that there were strong linear
relationships between the standard deviation of the Gaussian dis-
tribution and the target width when selecting 2D circular targets
with finger touch [Bi and Zhai 2013]. Our pilot results indicated
that it could also be true for pointing selection in VR.

• H3. The movement amplitude A does not affect the endpoint distri-
bution in a significant way. Bi and Zhai have suggested in their
work that the endpoint distribution for selecting 2D circular tar-
gets using finger touch was solely specified by the target size
W (and not movement amplitude A) [Bi and Zhai 2013]. Recent
work in selecting 1D moving targets suggested that the initial
distance A does not affect the endpoint distribution [Huang et al.
2018]. In contrast, Grossman and Balakrishnan have found that
the spread of hits (standard deviations of the Gaussian distri-
bution) increased by a constant factor with A [Grossman and
Balakrishnan 2005]. Despite this inconsistency found in the past
literature, we here hypothesized that the movement amplitude A
would not affect the endpoint distribution significantly.

• H4. There is no interaction effect of target width W and movement
amplitude A on the endpoint distribution. Past research did not
consider the interaction effect of target widthW and movement

1A simple introduction to the bivariate-Gaussian distribution necessary for this research
is provided in Appendix B.
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amplitudeA on endpoint distribution. We hypothesized that there
would be no interaction effect betweenW and A.

3.2 Participants, Apparatus, and Materials
Sixteen participants (6 females, 10 males) between the ages of 19-27
(mean = 21) were recruited from a local university campus. Data
from the pre-experiment questionnaire showed that twelve of them
had at least some VR experience before. They all had a normal or
corrected-to-normal vision.
We used an Oculus RIFT CV1 headset, which had 1080 × 1200

screen resolution per eye and an around 110◦ diagonal field-of-view
(FoV), to completely immerse the users into the 3D VE. A pair of
Oculus Touch wireless controllers were used as the input device.
The experiment was conducted on an Intel Core i7 processor PC
with a dedicated NVIDIA GTX 1080 Ti graphics card. The program
was developed using C#.NET and was run on the Unity3D platform.

3.3 Experimental Task and Measurements
The experimental task was designed similar to ISO9241-9 multi-
directional tapping task [ISO 2000; Soukoreff and MacKenzie 2004]
for head pointing selection with 21 spherical targets on the Fitts’s
ring (see Figure 2A). The participants were required to select the
targets in a clockwise manner, following the path indicated in Figure
2B. For each trial, a participant needed to move the cursor, which
was always at the center of the FoV, to the highlighted goal target
and click the trigger of the controller to confirm the selection. After
the selection was made, a short sound was provided and the next
trial would start with a new goal target highlighted. The participant
then had to move the cursor to the new goal target. No feedback was
provided to indicate the correctness of the selection. The selection
mechanism was chosen to be head-based pointing, as it could be
used in VR systems with or without a handheld controller.
We varied two independent variables in this experiment: target

widthW and movement amplitude A (see Figure 2A). The two vari-
ables were described in the angular form [Kopper et al. 2010; Petford
et al. 2018]. That is, the subtended angles ofW andAwere calculated
from the viewpoint of each participant and were used to determine
the different levels of the variables. According to our setting, the
radius of the target ring R is approximate to half of A (i.e., 2R ≈ A).
As we were using angular representation, it could be easier to

use a spherical coordinate system (r ,θ ,φ), where two angles (θ and
φ) and one distance (r ) were used to define a point in 3D (see [ISO
2009]). Since the pointing ray which was emitted from the pointing
device can be seen to have an infinite length, we can further simplify
the point representation to a 2D coordinate (by ignoring r ) in this
experiment. Therefore, we defined an endpoint p = (x ,y): x as the
angular error distance parallel to the direction of movement (from
the starting target to the goal target), y is the angular error distance
perpendicular to the line of movement (as shown in Figure 2C). Both
x and y can have negative values. The origin of the two axes was
set at the center of the goal target.

3.4 Design and Procedure
The study used a 8×3 within-subjects design with two factors: target
widthW (1◦ to 4.5◦, with an increment step of 0.5◦) and movement

Fig. 2. (A) The angular form of target widthW , movement amplitude A,
and the radius of the Fitts’s ring R . (B) The user followed the path indicated
by the arrows to select the targets sequentially. (C) The x-axis was defined
as the direction of movement, while the y-axis was perpendicular to the
line of movement. The origin was set at the center of the goal target.

amplitude A (30◦, 35◦, and 40◦). The values were determined by
preliminary tests and we ensured in the extreme condition (W =4.5◦
and A=30◦), the targets on the Fitts’s ring would not occlude each
other. The distance between the user and each target was a constant
value (100m). The order of theW was counterbalanced using the
Latin Square approach. For a givenW , the three A conditions were
presented in random order. For eachW ×A combination (one ring),
the first trial was discarded, leaving 20 timed repetitions. In sum,
we collected 7680 endpoints (8 W × 3 A × 16 participants × 20
repetitions) from the experiment.

The whole study lasted about fifteen minutes for each participant.
The workload of this continuous selection task was designed to
be relatively low, since the tiredness of using the VR device could
potentially influence the final results. Before the experiment, we
first invited the participants to fill in a questionnaire to gather their
demographic information. They were then introduced to the VR
device and the selection task. After that, they wore the VR headset
and started the practice trials. They also calibrated their head posi-
tions to the origin of the VR environment. Next, they proceeded to
the formal trials. They were instructed to select the target naturally,
rather than maintaining a 4% error rate as in many other studies.
Any speed-accuracy instructions will strongly modulate the end-
point spreads [Guiard et al. 2011], despite the fact that some users
would still tend to perform the tasks with their own strategies [Zhai
et al. 2004]. In this experiment, we wanted to simulate how users
would perform the selection in a natural way where they could
control their own pace to complete each task rather than following
potentially unnatural instructions. During the formal experiment,
participants did not take any breaks.

3.5 Data Pre-processing
As a common practice (e.g., [Huang et al. 2018]), we removed the
outliers that deviated by more than three standard deviations from
(1) the averaged center of both axes and (2) the averaged movement
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Table 1. The results of RM-ANOVAs in Study 1.

Factor DV ∗ d feffect d ferror F p η2
p Sig?

W µx 3.659 54.889 2.330 .073 .134 no
A µx 1.689 25.332 11.722 .000 .439 yes

W×A µx 6.934 104.008 1.698 .118 .102 no
W σx 3.758 56.373 58.587 .000 .796 yes
A σx 1.924 28.861 0.608 .545 .039 no

W×A σx 6.002 90.036 0.892 .505 .056 no

W µy 4.923 73.845 0.760 .579 .048 no
A µy 1.801 27.019 0.991 .337 .062 no

W×A µy 5.690 85.352 0.740 .612 .047 no
W σy 3.226 48.392 49.013 .000 .766 yes
A σy 2.000 29.999 0.652 .528 .042 no

W×A σy 6.495 97.428 0.908 .498 .057 no

W ρ 4.503 67.542 0.631 .661 .040 no
A ρ 1.765 26.476 0.154 .832 .010 no

W×A ρ 7.144 107.158 0.775 .612 .049 no
*Dependent variable (DV) ⋆Significant level α : 0.05

Fig. 3. Distributions of endpoints across all participants in 3 sample sets
(left): W = 1◦, A = 30◦ (middle): W = 3◦, A = 30◦ (right): W = 3◦,
A = 40◦. The grey circles are the targets, while the red dashed ellipses are
95% confidence ellipses.

time within each A ×W condition. According to previous research,
these "accidental clicks" could be induced by confusion of the par-
ticipants [Zhai et al. 2004]. In addition, we found that when making
a selection, some participants misclicked the trigger twice which
"skipped" one trial in the middle and caused the endpoint to be very
far from the target position. Therefore, a total of 262 trials (3.41%)
were discarded, leaving 7418 trials. The endpoints were grouped
into 384 sets (24 conditions × 16 participants) for analysis. Figure 3
shows three sample sets of endpoint distributions.

3.6 Results
All sets of endpoints passed the Kolmogorov-Smirnov test provided
by MATLAB (kstest()) for normality of distribution in both x- and
y axes (α = 0.05) . We then estimated the mean µ and the standard
deviation σ of the Gaussian distribution using the maximum likeli-
hood estimates (MLEs, mle() in MATLAB) for each set in both axes.
The correlation ρ between the two axes was calculated through the
function corrcoef(). Therefore, for each set of endpoints, we were
able to calculate the mean vector µ and the covariance matrix Σ

Fig. 4. Averaged σx of subjects’ endpoint distributions for eight levels ofW
(left) and averaged µx for three levels of A (right). The regression indicated
strong linear relationships between the factors and their corresponding
dependent variables.

Fig. 5. Averaged σy of subjects’ endpoint distributions for eight levels of
W . The regression indicated a strong linear relationship.

with five dependent variables µx , σx , µy , σy , and ρ (see Equation
19 in Appendix B for details).

The results from repeated-measures ANOVA (RM-ANOVA) of
the five dependent variables (DV for short) are summarized in Table
1. The degree of freedom was adjusted by the Greenhouse-Geisser
correction for violation of sphericity.W was shown to have a sig-
nificant main effect on both σx and σy ; while A had a significant
main effect on µx . No other effects or interactions were found. The
mean values of µy and ρ which were not significantly affected by
bothW and A were calculated to be 0.033 (s.e. = 0.007) and -0.022
(s.e. = 0.013) respectively across all sets of endpoints.

The linear regressions were conducted on the factors that had
main effects on the dependent variables. As shown in Figure 4-5, the
regression indicated strong linear relationships betweenW with σx
(R2 = 0.99),W with σy (R2 = 0.98), andAwith µx (R2 = 1.00). They
also showed non-zero intercepts on the y-axis. The estimated linear
relationships were: σx = 0.1421W +0.2946, µx = −0.0121A+0.3381,
and σy = 0.1139W + 0.2603.

3.7 Discussion
Our results indicate that H1 could be valid since (1) all sets of end-
points passed the normality test in both x- and y-axis—i.e., X and
Y are both normally distributed, and (2) it is probably reasonable
to assume that the two variables X and Y are independent as the
occurrence of either one of them is unlikely to affect the probability
of occurrence of the other. Therefore, our data suggest that the end-
point distribution of pointing selection in VEs probably, and likely,
follow a bivariate-Gaussian function.
Our H2 is supported—the RM-ANOVA indicate statistical main

effects ofW on both σx and σy . The regression also reveals strong
linear relationships ofW on both dependent variables. This finding
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is consistent with previous research in non-VR environments [Bi and
Zhai 2013]. From the estimated linear relationship σx = 0.1421W +
0.2946 and σy = 0.1139W + 0.2603, we can see non-zero intercepts
(about 0.3) on both σx and σy . This indicates that when the target
width becomes zero, there is probably an unavoidable selection
variance on both axes.

Our H3 is not supported—the RM-ANOVA suggest a statistical
main effect of A on µx . The regression shows a strong linear re-
lationship µx = −0.0121A + 0.3381. The relationship shows that
the participants became a bit "lazy" for selecting further targets (an
increased required movement amplitude led to a decreased relative
actual movement). This is inconsistent with previous findings, as A
neither has zero effect on the endpoint distribution as indicated in
Bi and Zhai’s work [Bi and Zhai 2013] nor has an effect on standard
deviations σ as demonstrated in Grossman and Balakrishnan’s re-
search [Grossman and Balakrishnan 2005]. The regression indicates
an extremely strong fit (R2 = 1.00). However, we have to be cau-
tious because (1) since we had envisioned no effect of A, we tested
only 3 levels of A which might be somewhat small to confirm this
linear relationship, and (2) the intercept of µx is not zero which was
somewhat against our intuition—intuitively, in the static pointing
scenario (movement amplitude A = 0), the mean value should be in
the center (µx = 0). Moreover, this "lazy effect" could come from
an increased R, rather than an increased A, as the muscle might
constrain the movement and thus make the users become "lazy".
With an ISO9241-9 task setting, we could not verify which sources
the effect came from. As a result, further investigation was still
needed based on other tasks.

Our results suggest that there is no interaction effect ofW and A
on the endpoint distribution, supporting our H4.

Apart from verifying the hypotheses, the results also reveal some
other important findings. Our results suggest that the correlation
coefficient ρ between X and Y will not be affected by eitherW
or A and is nearly equals to zero (ρ = -0.022). That is, there is no
correlation between X and Y, confirming the assumptions made by
[Bi and Zhai 2013; Grossman and Balakrishnan 2005]. Similarly, µy
is approximately zero (µy = 0.033) which shows that the endpoints
distribute around the center of the y-axis. In addition, we need to be
cautious against using the hardbound (α = 0.05) to determine if one
factor will have a significant main effect on the distribution. Our
results suggest thatW andW ×A could possibly have an effect on
µx (p = .073 and p = .118, respectively), both with a medium level of
effective size. However, for the simplicity of the model, these factors
were not taken into consideration when building the model, as they
did not show a clear (or strong enough) effect.
According to the results of this first study, we have been able

to create the bivariate-Gaussian distribution model for pointing
selection tasks in VR with the following parameters:

µ =

[
eA + f

0

]
, Σ =

[
(aW + b)2 0

0 (cW + d)2
]

(2)

where our data suggest that a = 0.1421, b = 0.2946, c = 0.1139,
d = 0.2603, e = −0.0121, and f = 0.3381. For ease of reference, we
name the endpoint distribution model determined by the study for
pointing selection in virtual reality environments as EDModel .

Based on the discussion above, we still need to verify how µx
is actually affected by the movement amplitude A. Moreover, it is
important to see if our model could be generalized to more complex
VR scenarios.

4 STUDY 2
This study aimed to test the robustness and reliability of EDModel
by increasing the complexity of the pointing selection task in VR en-
vironments. As an essential 3D feature, the visual depth of the target
was considered as one of the independent variables. Moreover, we
were curious about whether EDModel could be generalized to hand-
based pointing, although it was quite different from head-based
pointing (discuss later). Besides, the study was designed to help us
verify how µx of the distribution was affected by the movement
amplitude, as an unsolved question from the first study.

4.1 Participants, Apparatus, and Materials
Another eighteen participants (4 females, 14males) between the ages
of 18-26 (mean = 21) were recruited from a local university campus.
Data from the pre-experiment questionnaire suggested that thirteen
of them had at least some prior VR experience. They all had a normal
or corrected-to-normal vision. Among the participants, two of them
were left-handed. We used the same devices and platform as the last
experiment.

4.2 Experimental Task and Measurements
The task required the users to repeatedly point towards a fixed
spherical target from the home button in a VR environment (see
Figure 6A). For each trial, a participant needed to move the cursor
to the highlighted target and click the trigger button to confirm the
selection. After the trial ended (with a short sound), the participant
would then move back to the home button and click the trigger to
start the next trial. The participant must select the home button,
which appeared to be much smaller than the target, correctly to
proceed to the subsequent trial; this ensured they would start at the
same position for each trial. This design is unlike the reciprocal-
movement paradigm, in which an error might relate to errors that
occurred on the previous trials [Schmidt et al. 1978]. While it posed
more workload for participants (as they had to accurately select
the home button and a back-and-forth movement only counted as
one trial), it could possibly yield more accurate results. In addition,
by controlling the movement amplitude A to be the same as the
distance R between the center position of the head and the target
position, this task design could help us find out how µx was affected
by them after comparing with the results from Study 1. No feedback
was provided to indicate the correctness of the selection.

We varied two independent variables in this experiment: move-
ment amplitude R and target depth Z (see Figure 6A,B). R was
described in the angular form, while Z was a distance value (recall
the spherical coordinate system). All targets were set to a fixed
radius r . From both r and Z , we would be able to calculate the visual
widthWz of the target using the equation 3:

Wz = 2 · arcsin( r
Z
) (3)
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Fig. 6. (A) The angular form of movement amplitude R , and the home button
and the target used in the second study. (B) The target with the same radius
r located in different depths Z . (C) An illustration of the differences between
head- and hand-based pointing.

The angular error distance of an endpoint p = (x ,y) was defined
the same as the first study.

Apart from head-based pointing, we also introduced hand-based
pointing in this study to test the generalizability of EDModel. The
hand-based pointing technique, with which a visible ray was at-
tached to and emitted from a hand-held controller, was different
from the head-based pointing in three ways. First, the users would
be able to see a green virtual ray emitted from the handheld con-
troller when using hand-based pointing. Second, as shown in Figure
6C, users could select an occluded target through hand-based point-
ing, while the head-based pointing only allowed selection of visible
targets [Argelaguet and Andujar 2013]. In this study, we placed the
target to be very far from the viewpoint; hence the starting points
for hand- and head-based pointing could be considered to be the
same. By doing this, the selection differences caused by the two
mechanisms could be mitigated. Third, the hand-based pointing
was prone to the Heisenberg effect [Bowman et al. 2001], where
the trigger confirmation could produce a change in the controller’s
orientation, thus leading to the wrong selection. This effect was not
compensated in this study, as using the same controller for pointing
and confirmation might be more natural in current VR systems.

In this study, static textures (walls in Figure 6A) were constructed
to provide visual depth cues for targets located at different depths.

4.3 Design and Procedure
The study used a 6 × 3 within-subjects design with two factors:
movement amplitude R (10◦ to 35◦, with an increment step of 5◦)
and target depth Z (100m, 300m, and 500m, which corresponds to
5.73◦, 1.91◦, and 1.15◦ of visual width Wz ). The level design of
R allowed the targets to appear in a wider range than the first
study, while still not requiring the participants to stretch their neck
in an uncomfortable manner in the head pointing scenario. The
level design of Z allowed two levels of visual widths to be within
the range of the first study; but the third one (Z = 100m) had a

much larger visual width because we aimed to test the reliability
of EDModel for a much bigger (closer) target. The order of R was
counterbalanced using a Latin Square design. For a given R, the
three Z were presented randomly. For each R × Z combination, the
target would appear in a random direction (10◦ to 350◦, with an
increment step of 20◦; each direction appeared only once). The first
two trials were discarded, leaving 20 timed repetitions. Two input
mechanisms were used in this study: head-based pointing and hand-
based pointing. The order of the two was also counterbalanced.
In sum, we collected 6480 endpoints (6 R × 3 Z × 18 participants
× 20 repetitions) for each of the two input mechanisms from the
experiment.
The study lasted about 40-50 minutes for each participant. We

employed a similar procedure to collect demographic information
and introduce the task and VR devices. Participants then started
the practice trials and calibrated their head positions. After, they
proceeded to the formal trials. They were instructed to select the
target as naturally as possible like in the first study. Participants
were allowed to have a rest as long as they felt tired and were forced
to have a break prior to switching the input mechanism. Most of
them reported feeling slightly worn after the whole experiment.

4.4 Results
We used the same data pre-processing strategy as the first study. A
total of 192 trials (2.96%) and 154 trials (2.38%) were removed from
the head- and hand-based pointing data, respectively. The results
from RM-ANOVA with Greenhouse-Geisser correction for both
input mechanisms are summarized in Appendix C. We transferred
Z toWz using Equation 3 when conducting the linear regressions
throughout the whole analysis.

4.4.1 Head-based Pointing. We ran a K-S test for normality and
estimated µ, σ , and ρ as in the first study. Among the total of 324 sets
(18 conditions × 18 participants), 1 set of endpoints in the x-axis was
shown to be not normal. The µx , σx , and ρ of that set were replaced
by averaging the other 17 sets of data in the same condition.
The RM-ANOVA indicated that R and Z had significant effects

on µx , Z and R × Z had strong influences on σx , R and Z had main
impacts on σy (see Appendix C for detailed statistics).
We applied the linear relationships found in the first study. The

regression indicated strong linear relationship betweenWz with
σx (R2 = 0.99) andWz with σy (R2 = 0.99), but not A with µx
(R2 = 0.64). As shown in Figure 7 (middle), when R = 35, the ux
appeared to have a much lower value than the others. If we only
considered the first five datapoints, we would get a better fit with
the linear regression (R2 = 0.88). The linear relationships were
σx = 0.1140Wz + 0.4293, µx = −0.0025R − 0.1919 (omitting the last
datapoint), and σy = 0.0842Wz + 0.2800.

Applying the regression with the new influential factors indicated
by RM-ANOVA in this study, we found two new linear relationships
using the averaged datapoints of each R × Z condition (totally 18
datapoints): µx = −0.0071R − 0.1203Wz + 0.2358 (R̄2 = 0.86) and
σy = 0.0062R + 0.0842Wz + 0.1412 (R̄2 = 0.92).

4.4.2 Hand-based Pointing. We ran a K-S test and estimated µ, σ ,
and ρ. Among the total of 324 sets, 1 set of endpoints in y-axis
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Fig. 7. Averaged σx of subjects’ endpoint distributions for three levels of
Wz (left), averaged µx for six levels of R (middle), and averaged σy for three
levels ofWz (right).

was shown to be not normal. The µy , σy , and ρ of that set were
replaced by the averaged value of the other 17 sets of data in the
same condition.

The RM-ANOVA indicated that Z had significant effect on µx , R
and Z both had strong influences on σx , R played an important role
on µy , and R, Z , and R × Z had main impacts on σy .
Linear relationships found in the first study were applied. The

regression indicated strong linear relationship betweenWz with σx
(R2 = 1.00) andWz with σy (R2 = 1.00). The linear relationships
were σx = 0.1025Wz + 0.4146 and σy = 0.0679Wz + 0.3339. There
was no linear relationship found between R and µx .

Applying the regression with the new influential factors indicated
by RM-ANOVAs, we found µx = −0.1441Wz + 0.2649 (R2 = 1.00)
by fitting with 3 averaged datapoints which correspond to eachWz
level, σx = 0.0066R + 0.1025Wz + 0.2663 (R̄2 = 0.90), and σy =

0.0085R + 0.0679Wz + 0.1437 (R̄2 = 0.87) by fitting 18 averaged
datapoints. No linear relationship were found between R and µy .

4.5 Discussion
We first discuss the common features for both input mechanisms
(head- and hand-based pointing). We then treat the two mechanisms
separately and compare the results from this study to the previous
one. After that, we answer the research questions we had before
Study 2. Finally, we extend EDModel to more complex scenarios.

For both mechanisms, target depth Z can be transferred to visual
widthWz . This could be because the relative size of the target was
the dominant depth cue in our setting. Moreover, we found visual
widthWz , likeW , had strong linear relationships with both σx and
σy . The coefficients of the linear equations varied a bit due to the
different study settings and fewer number of tested levels, but were
somewhat similar to the first study. This suggested thatWz played a
similar role to target widthW . Therefore, when adjusting the target
depth in the design process, we could use Equation 3 to calculate
the visual widthWz and then fit it as the target width parameterW
into EDModel.

In contrast, as targets appeared at larger distances and in bigger
sizes, some results were different from the previous study. As move-
ment amplitude R increased, this factor started to influence σy in
the distribution of both mechanisms. Larger movement amplitude

R caused the endpoints of the y-axis to become more sparse. How-
ever, visual sizeWz led to much large influence on σy than R, as
suggested by a separate linear regression test that included both
factors. It could be essential to consider the effect of R on σy when
the movement amplitude is relatively large. In addition, fitting 18
datapoints (6R × 3Z ) to σy with both factors offered better results
(R̄2 = 0.92 for head and R̄2 = 0.87 for hand) than fitting the same
18 datapoints withWz alone (R2 = 0.85 for head and R2 = 0.69 for
hand).
For head-based pointing mechanism, as shown in Figure 7, R =

35◦ caused a significant drop of µx . In this case, we inferred that the
neck muscle constrained the pointing severely and caused a salient
"lazy effect" found in the first study. Furthermore, as the targets
became much larger (Wz = 5.73◦ in the extreme case), the factor
Wz started to influence µx . This evidence supported the inference
made by previous researchers (e.g., [Grossman and Balakrishnan
2005]) in that as target sizes grow, the center of the distribution
could be placed closer to the side of the target. The linear regression
combined both factors (R andWz ) was shown to provide a better
fit (R̄2 = 0.86) than single factor based regression. Hence, when
the movement amplitude R and target sizeWz were large (or target
appeared to be very close), we should apply linear regression with
both factors to adjust EDModel.

Hand-based pointing acted differently, as the constraint imposed
by muscle had a much smaller effect (R did not influence µx in
a significant way), leavingWz to be the only factor affecting µx .
Movement amplitude R also had an impact on σx which supported
the finding from Grossman and Balakrishnan [Grossman and Bal-
akrishnan 2005]—the spread of hit in x-axis increased when the
movement amplitude increased. However, the effect of R on σx was
much smaller thanWz . A linear regression combining both R and
Wz was shown to have a better fit (R̄2 = 0.90) for σx .

Similar to the previous study, the correlation coefficient ρ be-
tween X and Y was extremely small for both head- and hand-based
pointing (ρ = −0.006 and ρ = 0.031, respectively), thus we could set
ρ = 0. Besides, µy was also approximate to zero for bothmechanisms
(µy = −0.012 for head and µy = −0.041 for hand).

In response to the question raised at the beginning of Study 2
about how µx was actually affected by the movement amplitude in
head-based pointing: after comparing the µx values in the similar
range from both studies (W ∈ [1, 2] and R ∈ [15, 20]), our current
answer is that µx will decrease when the distance between the
target position and the center position of the head increases. That
is, the muscle will constrain the movement—the more stretched
the muscle, the lazier the user will become. It probably does not
relate to the starting position of the head. However, as we did not
vary the starting positions, and we examined multiple factors in this
study which could potentially mitigate the effect of the movement
amplitude, we may need further research to verify this claim.

In sum, for targets appearing at wider ranges and in larger sizes,
the previous simpler EDModel might not be enough. A more com-
plex EDModel with additional fitting parameters is needed. Besides,
it could be more appropriate to replace movement amplitude A in
Study 1 with R which is the angular distance between the target
position and the center position of the head. According to Study
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2, EDModel can be extended with the following parameters for
head-based pointing:

µ =

[
lR +mW + n

0

]
, Σ =

[
(дW + h)2 0

0 (iR + jW + k)2
]

(4)

where our data suggest that д = 0.1140, h = 0.4293, i = 0.0062,
j = 0.0842, k = 0.1412, l = −0.0071,m = −0.1203, and n = 0.2358.
For hand-based pointing, due to its differences from head-based
pointing, we use a separate list of parameters:

µ =

[
uW +v

0

]
, Σ =

[
(oR + pW + q)2 0

0 (rR + sW + t)2
]

(5)

where our data indicate that o = 0.0066, p = 0.1025, q = 0.2663,
r = 0.0085, s = 0.0679, t = 0.1437, u = −0.1441, and v = 0.2649.

When targets with a sizeW < 4.5◦ appeared with R < 30◦, a
simple EDModel as in the first study could produce satisfying results.
However, when the target appeared in a broader range with a larger
size, the complex EDModel is needed.

5 SUMMARY OF FINDINGS
We briefly summarize the main findings from both studies below.

Based on the data from the first experiment, we can see that
the endpoint distribution of pointing selection in VEs is bivariate-
Gaussian. The values of σx and σy are linearly correlated with
target widthW , while µy has a linear relationship with movement
amplitudeA (or R, which is the distance between the target position
and the center position of the head). No correlation ρ between X
and Y was found, and there were no other main effects either. Our
initial EDModel is represented as Equation 2 (replacing A with 2R
according to our finding in the second study).

After testing EDModel in more complex scenarios, we found that
target depth Z could be transferred to target widthW for model
fitting. In addition, we found that as targets appeared in wider visual
angles and had larger sizes, more factors would start to have impacts
on different the parameters of the endpoint distribution. Due to their
unique features, EDModel is extended for head- and hand-based
pointing separately for complex conditions (see Equation 4 and 5).
We have also found that muscle constraints might induce a "lazy"
effect with head-based pointing.

6 APPLICATIONS
In this section, we demonstrate the usefulness of EDModel in three
different applications that are related to pointing selection tasks in
VR: (1) correcting the bias in Fitts’s law, (2) predicting selection ac-
curacy, and (3) using a selection technique based on Bayes’ theorem.
Because of space limitations, the derivatives are all based on the
simpler EDModel (but the more complex model could be easily used
instead).

6.1 Correcting the Bias in Fitts’s Law
Fitts’s law [Fitts 1954], usually formulated as Equation 6 [Soukoreff
and MacKenzie 2004], has been widely used in HCI to predict the
movement timeMT to acquire a target with sizeW and at a distance
A. In the equation, aF and bF are regressions coefficients, while the

log term is named as the index of difficulty (ID) 2.

MT = aF + bF log2(
A

W
+ 1) (6)

Fitts’s law assumes a 4% error rate according to its information
theory basis [MacKenzie 1992; Soukoreff andMacKenzie 2004]. How-
ever, users often apply different speed-accuracy strategies according
to the properties of the target which might lead to a deviation of the
observed error rates from 4%. In this condition, Fitt’s law might pro-
duce a biased result. When this happens, a post-hoc correction can
be applied using the effective (observed) target widthWe and move-
ment amplitude Ae to replace the nominal widthW and amplitude
A (see Equation 7) [Crossman 1957; Welford 1968; Wobbrock et al.
2011b]. TheWe is usually determined using Equation 8 by fitting
the observed endpoint data. The Ae is the real movement distance
from the starting point to the effective target center. Although the
adjustment was shown to be not always entirely corrective [Zhai
et al. 2004] or questionable [Gori et al. 2017], it is still useful in many
cases [Soukoreff and MacKenzie 2004].

IDe = log2(
Ae
We
+ 1) (7)

We =
√

2πeσ = 4.133σ (8)

6.1.1 Calculating IDe with EDModel. With EDModel, collecting the
endpoint data of each new A ×W combination for the adjustment
is not needed. Our model can aid the calculation of the effective Ae
andWe either univariately (Ax andWx ) or bivariately (Ax,y and
Wx,y ) [Wobbrock et al. 2011b] for unseen targets with arbitrary A
andW properties. For uni-correction, we use Equation 9 and 10 to
replace the corresponding µ and σ in Ae andWe , and derive the
corrected Fitts’s law as Equation 11.

µx = eA + f (9)

σx = aW + b (10)

MT = aF + bF log2(
A + eA + f

√
2πe(aW + b)

+ 1) (11)

For bi-correction, the µ and σ are substituted using Equation 12
and 13. We adjusted Fitts’s law as Equation 14.

µx,y = µx + µy = eA + f (12)

σx,y =
√
σ 2
x + σ

2
y =

√
(aW + b)2 + (cW + d)2 (13)

MT = aF + bF log2(
A + eA + f√

2πe[(aW + b)2 + (cW + d)2]
+ 1) (14)

6.1.2 Model Evaluation. We tested the correction made by ED-
Model using the head-based pointing data collected from Study 1
and Study 2. As shown in Table 2, the correction results produced
by EDModel are very similar to the correction results based on em-
pirical data, while the corrected and uncorrected coefficients seem
to have large disparities. We also noticed that for the data from
Study 1, the correction seems to lower the fitting correlation R2. As
noted by Fitts himself and other researchers [Fitts and Radford 1966;
Soukoreff and MacKenzie 2004; Wobbrock et al. 2011b], it is typical
2We use aF and bF for the coefficients of Fitts’s law here to distinguish with the a and
b in EDModel.
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Table 2. Results of Fitts’s law regression coefficients (aF and bF ) and R2

in Study 1 and Study 2 using no correction, direct uni- and bi-correction
based on the empirical data, and EDModel-based uni- and bi-correction.

Model Study 1 Study 2
aF bF R2 aF bF R2

No Corr. 0.25 0.23 0.96 0.41 0.19 0.92
Direct Uni-Corr. -0.35 0.40 0.87 0.10 0.32 0.98
Direct Bi-Corr. -0.28 0.42 0.89 0.13 0.34 0.98
EDModel Uni-Corr. -0.38 0.40 0.89 0.15 0.30 0.95
EDModel Bi-Corr. -0.29 0.42 0.89 0.15 0.33 0.96

and appropriate for models using corrected IDe instead of nominal
ID, even if the correlations are lower.
Overall, EDModel could produce promising correction results

(close to the results fitted with empirical data) for Fitts’s law when
extending to unseenW ×A combinations.

6.2 Predicting Selection Accuracy
Estimating selection accuracy is important for the design of graph-
ical user interfaces and games. Following Wobbrock et al. [2008,
2011a], researchers have more recently explored modeling selection
accuracy in various domains, including finger touch selection [Bi
and Zhai 2016] and moving target selection [Huang and Lee 2019;
Huang et al. 2018; Lee et al. 2018; Lee and Oulasvirta 2016; Lee et al.
2019; Park et al. 2018]. Here we demonstrate how Bi’s approach
[Bi and Zhai 2016] can be combined with EDModel to assist in the
estimation of pointing selection accuracy in VR.

6.2.1 Combining EDModel with Bi’s Method. The probability of
successfully acquiring a target is the probability of the selection
endpoint falling within the target boundaries [Bi and Zhai 2016].
As such, the success rate of acquiring the target D can be calculated
through the probability density function (pdf, see Equation 20 in
Appendix B) of the endpoint distribution using

y =

∬
D
f (
[
x
y

]
, µ, Σ)dxdy (15)

According to the results from both studies, ρ = 0 and µy = 0,
such that Equation 15 can be expanded and simplified to:

y =

∬
D

1
2πσxσy

exp (− (x − µx )2

2σ 2
x

− y2

2σ 2
y
)dxdy (16)

Replacing µx , σx , and σy with the parameters found from Study
1 and Study 2, we are able to estimate the selection accuracy.

6.2.2 Model Evaluation. We evaluated the results of the EDModel-
based accuracy prediction using the head-based pointing data from
Study 1 and Study 2. We used Wobbrock’s error model [Wobbrock
et al. 2011a] as a baseline (see Appendix D for a simple explanation
of the model). According to Wobbrock et al. [2008], the a and b
parameters of the baseline model were adjusted with the bivariate
post-hoc correction [Crossman 1957; Wobbrock et al. 2011b]. The
prediction results are presented in Figure 8.

Fig. 8. Accuracy prediction results for head-based pointing selection from
Study 1 and Study 2. EDModel-based prediction led to a slightly better fit
than the baseline model.

The EDModel-based prediction fit the observed accuracy well
(R2 = 0.95, Mean Absolute Error (MAE) = 3.14% for Study 1; R2 =
0.91, MAE = 4.58% for Study 2) and achieved a slightly better
performance than the baseline model (R2 = 0.88, MAE = 3.56% for
Study 1; R2 = 0.91, MAE = 6.10% for Study 2).
In sum, EDModel-based accuracy prediction could be a reliable

method for predicting selection accuracy in VR and hence can be
useful to UI designers to support their decisions.

6.3 BayesPointer for Pointing Selection in VR
Recent work [Huang and Lee 2019; Huang et al. 2018; Li et al. 2018]
has proposed an efficient selection technique based on pointing
distribution called BayesPointer for moving targets in 1D and 2D
space. The basic idea of this technique is to automatically choose the
target with the maximum posterior probability in Bayes’ theorem
[Bi and Zhai 2013]. Similar approaches have also been applied in text
entry to infer a user’s intended text from a noisy input [Goodman
et al. 2002; Yu et al. 2017].

6.3.1 Combining BayesPointer with EDModel. With our endpoint
distribution model, BayesPointer can be transferred for pointing
tasks in VR. Assuming the list of targetsT = {t1, t2, ..., tn }, the prob-
ability of selecting a target t with an endpoint s is P(t |s). According
to Bayes’ theorem (Equation 17), P(t |s) can be calculated via (1)
prior probability P(t)which is usually set to 1/n; (2) input occurring
probability P(s) which is a constant value; and (3) the likelihood
function P(s |t) which can be computed from the probability density
function (pdf, see Equation 20 in Appendix B) of EDModel.

P(t |s) = P(s |t)P(t)
P(s) (17)

Because P(t) and P(s) are the same for each potential target, the
intended target t∗ can be chosen using Equation 18–this is the
decision-making strategy of BayesPointer. Similar to [Li et al. 2018],
the auto-selection mechanism is only triggered when the pointer
falls into the range within the 3W contour line of the target.

t∗ = arg max
t

P(s |t) = arg max
t

f (s, µ, Σ) (18)
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Fig. 9. Selection task and study results when comparing raycasting and
EDModel-based BayesPointer. The later technique performed much better
in selecting small targets regarding both selection time and accuracy.

6.3.2 Technique Evaluation. We conducted a small study with 4
participants to demonstrate the usefulness of BayesPointer with our
endpoint distribution model for pointing selection tasks in VR.

The task design was similar to our first study, with four distractors
surrounding the goal target (see Figure 9). The target widthW had
three levels (0.5◦, 2◦, and 4◦), while the width of the distractors
remained the same (2◦). For each condition, we ran two rounds of
the Fitts’s ring (R = 20◦). To assist this pointing task, EDModel-
based BayesPointer would highlight the intended target with a red
border. Raycasting was used as the baseline technique, and the target
would be highlighted only if the user was pointing on it. In total,
we collected 3W× 2 techniques × 4 participants × 20 repetitions =
480 trials of data.

As shown in Figure 9, EDModel-based BayesPointer achieved
much better performance in terms of both shorter selection time and
higher accuracy than the baseline technique in selecting small tar-
gets. Both techniques had similar performance for selecting medium
and large size target. We envisioned EDModel-based BayesPointer
could be particularly helpful for selection small and/or far-away tar-
gets. While evaluating this selection technique was not our primary
focus, we used this small study to show that the difference between
the EDModel-based technique and the baseline one was significant
enough. Because of space limitations, we leave larger studies with
more complex experiment settings for future work.

7 LIMITATIONS AND FUTURE WORK
In this section, we describe some limitations of the current work
and possible avenues for future research. First, although we tried to
position the targets in wide visual areas in our studies, the angles
between the targets and users’ view were still within the FoV of the
head-mounted displays (HMDs) device (a bit larger in some con-
ditions). In addition, although we considered targets with a visual
width at around 6◦ which appeared to be large, their sizes could be
further enlarged. Future work could explore targets located far from
the user’s center viewing angle and outside of their view (i.e., off-
screen targets [Yu et al. 2019]). Having these additional conditions
into one single model could further extend its usefulness and make
it more general. Second, as suggested by previous research, a tar-
get’s placement direction could also have an impact on its selection
[Hancock and Booth 2004]. This aspect was outside of the scope of
this work and was not explored. Future work could try to integrate
the direction parameter into the model. Moreover, future research
could examine targets with arbitrary shapes [Grossman et al. 2007],

other input devices or methods, and displays which have different
features from VR HMDs, like screen displays coupled with stereo
glasses [Barrera Machuca and Stuerzlinger 2019]. Additionally, the
stereo acuity of participants could have an impact on task perfor-
mance with targets of different depths and may probably be useful
to consider in future research.

We also look forward to future research that could help develop
other modeling possibilities for endpoint distribution in VR using
our open-sourced dataset or conducting user studies with other
parameters and scenarios. Finally, there are other applications that
can leverage our endpoint distributionmodel tomake the interaction
more efficient and usable. We hope to see more of such applications
in the future.

8 CONCLUSION
In this paper, we present EDModel, an endpoint distribution model
which is based on the bivariate-Gaussian distribution for pointing
selection in virtual reality environments. Through two user studies,
we show how different factors, such as target width, movement
amplitude and target depth, could affect the endpoint distribution.
Two versions of EDModel are proposed, one dealing with simpler
scenarios and the othermore complex conditions. The simplermodel
uses fewer parameters, which are relaxed in the complex EDModel
to deal with targets that are larger and have broader ranges. We
also describe three current applications that can use EDModel. The
results of their evaluation show that EDModel can achieve high
prediction accuracy for selection endpoints and could be suitable
for various applications in virtual reality systems.
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A OPEN-SOURCED DATASET
The dataset we have collected in Study 1 and Study 2 is open-sourced,
available at https://github.com/Davin-Yu/Endpoints-Modeling. The
dataset contains 20640 pointing selection trials (including task set-
tings, endpoint locations, and task completion time) collected in
the VR environments. We also include the data processing scripts
for replication and future exploration purpose. While most of the
previous work did not make their dataset public available, we hope
this dataset could provide an early testbed for future new models.

B BIVARIATE-GAUSSIAN DISTRIBUTION
The bivariate-Gaussian distribution (or bivariate-normal distribu-
tion) extends the univariate-Gaussian distribution to two dimen-
sions. It is a distribution of two variablesX andY , where each single
variable has a Gaussian distribution (for formal mathematical defini-
tions, please refer to [Bertsekas and Tsitsiklis 2002; Kotz et al. 2004]).
If X and Y are both normally distributed and independent, then it
implies the pair (X ,Y ) must have bivariate-Gaussian distribution.

A bivariate-Gaussian distribution contains: a mean vector µ and
the covariance matrix Σ, where

µ =

[
µx
µy

]
, Σ =

[
σ 2
x ρσxσy

ρσxσy σ 2
y

]
(19)

in which µx and µy are the mean, σx and σy are the standard de-
viation of the distribution of the variable X and Y , and ρ is the
correlation betweenX andY . The probability density function (pdf)
for bivariate-Gaussian distribution can be calculated as

y = f (x , µ, Σ) = 1
2π

√
|Σ|

exp(−1
2
(x − µ)Σ−1(x − µ)′) (20)

where x is a real 2-dimensional column vector and |Σ| is the deter-
minant of Σ (|Σ| ≡ det Σ).

C RM-ANOVA RESULTS IN STUDY 2
The results of RM-ANOVAs in Study 2. Only the factors which had
significant main effects on DV were reported.

Factor DV d feffect d ferror F p η2
p Input

R µx 3.505 59.579 4.154 .007 .196 Head
Z µx 1.057 17.964 29.721 .000 .636 Head
Z σx 1.214 20.646 118.114 .000 .874 Head

R × Z σx 5.776 98.192 2.308 .042 .120 Head
R σy 3.438 58.454 9.521 .000 .359 Head
Z σy 1.217 20.691 85.402 .000 .834 Head

Z µx 1.512 25.699 30.701 .000 .644 Hand
R σx 3.367 57.236 4.684 .004 .216 Hand
Z σx 1.555 26.427 77.741 .000 .821 Hand
R µy 3.091 52.547 5.221 .003 .235 Hand
R σy 3.752 63.792 10.485 .000 .381 Hand
Z σy 1.385 23.540 74.647 .000 .815 Hand

R × Z σy 5.151 87.575 4.486 .001 .209 Hand

D WOBBROCK’S ERROR MODEL
Wobbrock et al. [Wobbrock et al. 2008, 2011a] have derived a point-
ing error model from Fitts’s law where the probability of an error
Perror is calculated through the equation:

Perror = 1 − er f

{
1

A
√

2

[
2.066 ·W (2

MTe −a′
b′ − 1)

]}
(21)

In the equation, er f (·) is the Gauss error function,A is themovement
amplitude,W is the target width, a and b are empirical parameters
inherited from Fitts’s law, andMTe is the actual time taken to reach
the target. The model has shown to be useful for both 1D [Wobbrock
et al. 2008] and 2D [Wobbrock et al. 2011a] pointing tasks.
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